#' Plot the results of simulating polychoric correlation and kappa behavior.
#' @param simout Output from fun.testpoly
#' @export
fun.plottestpoly<-function(simout){
out<-simout$mat
par(mfrow=c(2,1))
db<-density(out[4,])
plot(db,main="Correlation Estimates from Bivariate Normal",
xlab="rho",lty=1,col=1,
sub=paste("True correlation",simout$rho,"Sample size",simout$nsamp))
legend(quantile(db$x,.01),max(db$y),lty=1:4,col=1:4,
legend=c("Sample Correlation",paste("Poly.",2:4,"way")))
for(j in 1:3) lines(density(out[j,]),lty=j+1,col=j+1)
dbs<-list(density(out[5,]),density(out[6,]),density(out[7,]))
rx<-range(dbs[[1]]$x)
ry<-range(c(dbs[[1]]$y,dbs[[2]]$y,dbs[[3]]$y))
plot(rx,ry,type="n", main="Kappa Estimates from Bivariate Normal",
xlab="kappa",
sub=paste("True correlation",simout$rho,"Sample size",simout$nsamp))
legend(rx[1],ry[2],lty=2:4,col=2:4,
legend=c("2 way","3 way","4 way"))
for(j in 1:3) lines(dbs[[j]],lty=j+1,col=j+1)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.