#' @useDynLib mvnMix
#' @importFrom Rcpp sourceCpp
#' @description Generate initial values used by the PMLE of multivariate normal mixture
#' @export
#' @title mvnmixPMLEinit
#' @name mvnmixPMLEinit
#' @param y n by d matrix of data
#' @param ninits number of initial values to be generated
#' @param m The number of components in the mixture
#' @return A list with the following items:
#' \item{alpha}{m by ninits matrix for alpha}
#' \item{mu}{d*m by ninits matrix for mu, each column is (mu_1',...,mu_m')'}
#' \item{sigma}{d(d+1)/2*m by ninits matrix for sigma, each column is (vech(sigma_1)',...,vech(sigma_m)')'}
mvnmixPMLEinit <- function (y, ninits = 1, m = 2)
{
# if (normalregMix.test.on) # initial values controlled by normalregMix.test.on
# set.seed(normalregMix.test.seed)
n <- nrow(y)
d <- ncol(y)
dsig <- d*(d+1)/2
alpha <- matrix(runif(m * ninits), nrow=m)
alpha <- t(t(alpha) / colSums(alpha))
mu <- matrix(0, nrow=d, ncol=m*ninits)
variance <- matrix(0, nrow=d, ncol=m*ninits)
sigma <- matrix(0, nrow=dsig, ncol = m*ninits)
corrmax <- 0.4 # maximum of correlation coefficient in randomly drawn sigma matrix
# generate initial values for each element of y
for (i in 1:d){
y0 <- y[,i]
mu.i <- runif(m*ninits, min=min(y0), max =max(y0))
variance.i <- runif(m*ninits, min=0.1, max=2)*var(y0)
mu[i,] <- mu.i
variance[i,] <- variance.i # d by m*ninits matrix
}
mu <- matrix(mu, nrow=d*m) # mu was d by m*ninits matrix
sigma[1,] <- variance[1,]
sigma[c(2:d),] <- sqrt( t(t(variance[c(2:d),]) * variance[1,]) ) *
runif((d-1)*m*ninits, min=-corrmax, max=corrmax)
if (d >=3){
for (i in 1:(d-2)){
sigma[i*d-i*(i-1)/2+1,] <- variance[i+1,]
sigma[c((i*d-i*(i-1)/2+2):((i+1)*d-i*(i+1)/2)),] <-
sqrt( t(t(variance[c((i+2):d),]) * variance[(i+1),]) ) *
runif((d-i-1)*m*ninits, min=-corrmax, max=corrmax)
}
}
sigma[dsig,] <- variance[d,]
sigma <- matrix(sigma, nrow=dsig*m) # sigma was dsig by m*ninits matrix
list(alpha = alpha, mu = mu, sigma = sigma)
} # end function mvnmixPMLEinit
#' @description Estimates parameters of a finite mixture of multivariate normals by
#' penalized maximum log-likelhood functions.
#' @export
#' @title mvnmixPMLE
#' @name mvnmixPMLE
#' @param y n by d matrix of data
#' @param m The number of components in the mixture
#' @param ninits The number of randomly drawn initial values.
#' @param epsilon The convergence criterion. Convergence is declared when the penalized log-likelihood increases by less than \code{epsilon}.
#' @param maxit The maximum number of iterations.
#' @param epsilon.short The convergence criterion in short EM. Convergence is declared when the penalized log-likelihood increases by less than \code{epsilon.short}.
#' @param maxit.short The maximum number of iterations in short EM.
#' @param binit The initial value of parameter vector that is included as a candidate parameter vector
#' @return A list of class \code{mvnmix} with items:
#' \item{coefficients}{A vector of parameter estimates. Ordered as \eqn{\alpha_1,\ldots,\alpha_m,\mu_1,\ldots,\mu_m,\sigma_1,\ldots,\sigma_m}.}
#' \item{parlist}{The parameter estimates as a list containing alpha, mu, and sigma.}
#' \item{vcov}{The estimated variance-covariance matrix.}
#' \item{loglik}{The maximized value of the log-likelihood.}
#' \item{penloglik}{The maximized value of the penalized log-likelihood.}
#' \item{aic}{Akaike Information Criterion of the fitted model.}
#' \item{bic}{Bayesian Information Criterion of the fitted model.}
#' \item{postprobs}{n by m matrix of posterior probabilities for observations}
#' \item{components}{n by 1 vector of integers that indicates the indices of components
#' each observation belongs to based on computed posterior probabilities}
#' \item{call}{The matched call.}
#' \item{m}{The number of components in the mixture.}
#' @note \code{mvnmixPMLE} maximizes the penalized log-likelihood function
#' using the EM algorithm with combining short and long runs of EM steps as in Biernacki et al. (2003).
#' \code{mvnmixPMLE} first runs the EM algorithm from \code{ninits}\eqn{* 4m(1 + p)} initial values
#' with the convertence criterion \code{epsilon.short} and \code{maxit.short}.
#' Then, \code{mvnmixPMLE} uses \code{ninits} best initial values to run the EM algorithm
#' with the convertence criterion \code{epsilon} and \code{maxit}.
#' @references Alexandrovich, G. (2014)
#' A Note on the Article `Inference for Multivariate Normal Mixtures' by J. Chen and X. Tan
#' \emph{Journal of Multivariate Analysis}, \bold{129}, 245--248.
#'
#' Biernacki, C., Celeux, G. and Govaert, G. (2003)
#' Choosing Starting Values for the EM Algorithm for Getting the
#' Highest Likelihood in Multivariate Gaussian Mixture Models,
#' \emph{Computational Statistics and Data Analysis}, \bold{41}, 561--575.
#'
#' Boldea, O. and Magnus, J. R. (2009)
#' Maximum Likelihood Estimation of the Multivariate Normal Mixture Model,
#' \emph{Journal of the American Statistical Association},
#' \bold{104}, 1539--1549.
#'
#' Chen, J. and Tan, X. (2009)
#' Inference for Multivariate Normal Mixtures,
#' \emph{Journal of Multivariate Analysis}, \bold{100}, 1367--1383.
#'
#' McLachlan, G. J. and Peel, D. (2000) \emph{Finite Mixture Models}, John Wiley \& Sons, Inc.
mvnmixPMLE <- function (y, m = 2, #vcov.method = c("Hessian", "OPG", "none"),
ninits = 100, epsilon = 1e-08, maxit = 2000,
epsilon.short = 1e-02, maxit.short = 500, binit = NULL) {
y <- as.matrix(y)
d <- ncol(y)
if (d == 1) { stop("y must have more than one columns.") }
dsig <- d*(d+1)/2
n <- nrow(y)
ninits.short <- ninits*10*m*d
# vcov.method <- match.arg(vcov.method)
vcov.method <- "none"
var0 <- var(y) * (n-1)/n
if (m == 1) {
mu <- colMeans(y)
sigma <- var0[lower.tri(var0, diag=TRUE)]
loglik <- - (n/2) *(d + log(2*pi) + log(det(var0)))
aic <- -2*loglik + 2*(m-1 + m*d + m*dsig)
bic <- -2*loglik + log(n)*(m-1 + m*d + m*dsig)
penloglik <- loglik
parlist <- list(alpha = 1, mu = mu, sigma = sigma)
coefficients <- c(alpha = 1, mu = mu, sigma = sigma)
postprobs <- rep(1, n)
} else { # m >= 2
# generate initial values
tmp <- mvnmixPMLEinit(y = y, ninits = ninits.short, m = m)
# the following values for (h, k, tau, an) are given by default
# h <- 0 # setting h=0 gives PMLE
# k <- 0 # k is set to 0 because this is PMLE
# tau <- 0.5 # tau is set to 0.5 because this is PMLE
an <- 1/sqrt(n) # penalty term for variance
var0vec <- var0[lower.tri(var0, diag=TRUE)]
sigma0 <- rep(var0vec, m)
mu0 <- double(m+1) # dummy
# short EM
b0 <- as.matrix(rbind( tmp$alpha, tmp$mu, tmp$sigma))
if (!is.null(binit)) {
b0[ , 1] <- binit
}
out.short <- cppMVNmixPMLE(b0, y, mu0, sigma0, m, an, maxit.short,
ninits.short, epsilon.short)
# long EM
components <- order(out.short$penloglikset, decreasing = TRUE)[1:ninits]
b1 <- b0[ ,components, drop=FALSE] # b0 has been updated
out <- cppMVNmixPMLE(b1, y, mu0, sigma0, m, an, maxit, ninits, epsilon)
index <- which.max(out$penloglikset)
alpha <- b1[1:m,index] # b0 has been updated
mu <- b1[(m+1):(m+m*d),index]
sigma <- b1[(m+m*d+1):(m+m*d+m*dsig),index]
penloglik <- out$penloglikset[index]
loglik <- out$loglikset[index]
postprobs <- matrix(out$post[,index], nrow=n)
aic <- -2*loglik + 2*(m-1 + m*d + m*dsig)
bic <- -2*loglik + log(n)*(m-1 + m*d + m*dsig)
mu.matrix <- matrix(mu, nrow=d, ncol=m) # d by m matrix
sigma.matrix <- matrix(sigma, nrow=dsig, ncol=m) # dsig by m matrix
mu.order <- order(mu.matrix[1,])
alpha <- alpha[mu.order]
mu.2 <- mu.matrix[,mu.order]
sigma.2 <- sigma.matrix[,mu.order]
mu <- c(mu.2)
sigma <- c(sigma.2)
postprobs <- postprobs[, mu.order]
colnames(postprobs) <- c(paste("comp", ".", 1:m, sep = ""))
parlist <- list(alpha = alpha, mu = mu, sigma = sigma)
coefficients <- unlist(parlist)
} # end m >= 2
if (vcov.method == "none") {
vcov <- NULL
} else {
vcov <- normalmixVcov(y = y, coefficients = coefficients, vcov.method = vcov.method)
}
a <- list(coefficients = coefficients, parlist = parlist, loglik = loglik,
penloglik = penloglik, aic = aic, bic = bic, postprobs = postprobs,
call = match.call(), m = m)
# a <- list(coefficients = coefficients, parlist = parlist, vcov = vcov, loglik = loglik,
# penloglik = penloglik, aic = aic, bic = bic, postprobs = postprobs,
# components = getComponentcomponents(postprobs),
# call = match.call(), m = m, label = "PMLE")
# class(a) <- "normalregMix"
a
} # end function mvnmixPMLE
#' @description Compute ordinary & penalized log-likelihood ratio resulting from
#' MEM algorithm at k=1,2,3.
#' @title mvnmixMaxPhi
#' @name mvnmixMaxPhi
#' @param y n by d matrix of data
#' @param parlist The parameter estimates as a list containing alpha, mu, and sigma
#' in the form of (alpha = (alpha_1,...,alpha_m), mu = (mu_1',...,mu_m'),
#' sigma = (vech(sigma_1)',...,vech(sigma_m)')
#' @param an a term used for penalty function
#' @param tauset A set of initial tau value candidates
#' @param ninits The number of randomly drawn initial values.
#' @param epsilon.short The convergence criterion in short EM. Convergence is declared when the penalized log-likelihood increases by less than \code{epsilon.short}.
#' @param epsilon The convergence criterion. Convergence is declared when the penalized log-likelihood increases by less than \code{epsilon}.
#' @param maxit.short The maximum number of iterations in short EM.
#' @param maxit The maximum number of iterations.
#' @param verb Determines whether to print a message if an error occurs.
#' @param parallel Determines what percentage of available cores are used, represented by a double in [0,1]. 0.75 is default.
#' @param cl Cluster used for parallelization; if it is \code{NULL}, the system will automatically
#' create a new one for computation accordingly.
#' @return A list with items:
#' \item{loglik}{Log-likelihood resulting from MEM algorithm at k=1,2,3.}
#' \item{penloglik}{Penalized log-likelihood resulting from MEM algorithm at k=1,2,3.}
mvnmixMaxPhi <- function (y, parlist, an, tauset = c(0.1,0.3,0.5),
ninits = 10, epsilon.short = 1e-02, epsilon = 1e-08,
maxit.short = 500, maxit = 2000,
verb = FALSE,
parallel = 0.75,
cl = NULL) {
# Given a parameter estimate of an m component model and tuning paramter an,
# maximize the objective function for computing the modified EM test statistic
# for testing H_0 of m components against H_1 of m+1 for a univariate normal finite mixture
warn <- options(warn=-1) # Turn off warnings
m <- length(parlist$alpha)
d <- ncol(y)
dsig <- d*(d+1)/2
ninits.short <- ninits*10*m
loglik.all <- matrix(0,nrow=m*length(tauset),ncol=3)
penloglik.all <- matrix(0,nrow=m*length(tauset),ncol=3)
coefficient.all <- matrix(0,nrow=m*length(tauset),ncol=((1+d+dsig)*(m+1)))
# num.cores <- max(1,floor(detectCores()*parallel))
# if (num.cores > 1) {
# if (is.null(cl))
# cl <- makeCluster(detectCores())
# registerDoParallel(cl)
# results <- foreach (t = 1:length(tauset),
# .export = 'mvnmixMaxPhiStep', .combine = c) %:%
# foreach (h = 1:m) %dopar% {
# mvnmixMaxPhiStep (c(h, tauset[t]), y, parlist, an,
# ninits, ninits.short,
# epsilon.short, epsilon,
# maxit.short, maxit,
# verb) }
# on.exit(cl)
# loglik.all <- t(sapply(results, "[[", "loglik"))
# penloglik.all <- t(sapply(results, "[[", "penloglik"))
# coefficient.all <- t(sapply(results, "[[", "coefficient"))
# }
# else
for (h in 1:m)
for (t in 1:length(tauset)) {
rowindex <- (t-1)*m + h
tau <- tauset[t]
result <- mvnmixMaxPhiStep(c(h, tau), y, parlist, an,
ninits, ninits.short,
epsilon.short, epsilon,
maxit.short, maxit,
verb)
loglik.all[rowindex,] <- result$loglik
penloglik.all[rowindex,] <- result$penloglik
coefficient.all[rowindex,] <- result$coefficient
}
loglik <- apply(loglik.all, 2, max) # 3 by 1 vector
penloglik <- apply(penloglik.all, 2, max) # 3 by 1 vector
index <- which.max(loglik.all[ ,3]) # a par (h,m) that gives the highest likelihood at k=3
coefficient <- as.vector(coefficient.all[index,])
out <- list(coefficient = coefficient, loglik = loglik, penloglik = penloglik)
out
} # end mvnmixMaxPhi
#' @description Given a pair of h and tau and data, compute ordinary &
#' penalized log-likelihood ratio resulting from MEM algorithm at k=1,2,3,
#' tailored for parallelization.
#' @title mvnmixMaxPhiStep
#' @name mvnmixMaxPhiStep
#' @param htaupair A set of h and tau
#' @param y n by d matrix of data
#' @param parlist The parameter estimates as a list containing alpha, mu, and sigma
#' in the form of (alpha = (alpha_1,...,alpha_m), mu = (mu_1',...,mu_m'),
#' sigma = (vech(sigma_1)',...,vech(sigma_m)')
#' @param an a term used for penalty function
#' @param ninits The number of randomly drawn initial values.
#' @param ninits.short The number of candidates used to generate an initial phi, in short MEM
#' @param epsilon.short The convergence criterion in short EM. Convergence is declared when the penalized log-likelihood increases by less than \code{epsilon.short}.
#' @param epsilon The convergence criterion. Convergence is declared when the penalized log-likelihood increases by less than \code{epsilon}.
#' @param maxit.short The maximum number of iterations in short EM.
#' @param maxit The maximum number of iterations.
#' @param verb Determines whether to print a message if an error occurs.
#' @return A list of phi, log-likelihood, and penalized log-likelihood resulting from MEM algorithm.
mvnmixMaxPhiStep <- function (htaupair, y, parlist, an,
ninits, ninits.short,
epsilon.short, epsilon,
maxit.short, maxit,
verb)
{
alpha0 <- parlist$alpha
m <- length(alpha0)
m1 <- m+1
k <- 1
n <- nrow(y)
d <- ncol(y)
dsig <- d*(d+1)/2
h <- as.numeric(htaupair[1])
tau <- as.numeric(htaupair[2])
mu0 <- parlist$mu # d*m by 1
mu0matrix <- matrix(mu0, nrow=d, ncol=m)
mu01 <- mu0matrix[1,]
mu0h <- c(-1e+10,mu01,1e+10) # m+2 by 1
sigma0 <- parlist$sigma # dsig*m by 1
sigma0h<- c(sigma0[1:(h*dsig)],sigma0[((h-1)*dsig+1):(m*dsig)]) # (m+1)*dsig by 1
# generate initial values
tmp <- mvnmixPhiInit(y = y, parlist = parlist, h=h, tau = tau, ninits = ninits.short)
# short EM
b0 <- as.matrix(rbind(tmp$alpha, tmp$mu, tmp$sigma))
out.short <- cppMVNmixPMLE(b0, y, mu0h, sigma0h, m1, an, maxit.short, ninits.short,
epsilon.short, tau, h, k)
components <- order(out.short$penloglikset, decreasing = TRUE)[1:ninits]
if (verb && any(out.short$notcg)) {
cat(sprintf("non-convergence rate at short-EM = %.3f\n",mean(out.short$notcg)))
}
# long EM
b1 <- as.matrix(b0[ ,components, drop=FALSE])
out <- cppMVNmixPMLE(b1, y, mu0h, sigma0h, m1, an, maxit, ninits, epsilon, tau, h, k)
index <- which.max(out$penloglikset)
alpha <- b1[1:m1,index]
mu <- b1[(m1+1):(m1+d*m1),index]
sigma <- b1[(m1+d*m1+1):(m1+d*m1+dsig*m1),index]
mu.matrix <- matrix(mu, nrow=d, ncol=m1) # d by m1 matrix
sigma.matrix <- matrix(sigma, nrow=dsig, ncol=m1) # dsig by m1 matrix
sigma0h.matrix <- matrix(sigma0h, nrow=dsig, ncol=m1) # dsig by m1 matrix
mu.order <- order(mu.matrix[1,])
alpha <- alpha[mu.order]
mu.2 <- mu.matrix[,mu.order]
sigma.2 <- sigma.matrix[,mu.order]
sigma0h.2 <- sigma0h.matrix[,mu.order]
mu <- c(mu.2)
sigma <- c(sigma.2)
sigma0h <- c(sigma0h.2)
b <- as.matrix( c(alpha, mu, sigma) )
# initilization
loglik <- vector("double", 3)
penloglik <- vector("double", 3)
coefficient <- vector("double", length(b))
penloglik[1] <- out$penloglikset[[index]]
loglik[1] <- out$loglikset[[index]]
for (k in 2:3) {
ninits <- 1
maxit <- 2
# Two EM steps
out <- cppMVNmixPMLE(b, y, mu0h, sigma0h, m1, an, maxit, ninits, epsilon, tau, h, k)
alpha <- b[1:m1,1] # b has been updated
mu <- b[(m1+1):(m1+d*m1),1]
sigma <- b[(m1+d*m1+1):(m1+d*m1+dsig*m1),1]
loglik[k] <- out$loglikset[[1]]
penloglik[k] <- out$penloglikset[[1]]
# Check singularity: if singular, break from the loop
# compute determinants
detsigma <- double(m1)
for (j in 1:m1){
sigma.jmat <- diag(d)
sigma.j <- sigma[((j-1)*dsig+1):(j*dsig)]
sigma.jmat[lower.tri(sigma.jmat, diag=TRUE)] <- sigma.j
sigma.jmat <- t(sigma.jmat) + sigma.jmat
diag(sigma.jmat) <- diag(sigma.jmat)/2
detsigma[j] <- det(sigma.jmat)
}
if ( any(detsigma < 1e-06) || any(alpha < 1e-06) || is.na(sum(alpha)) ) {
loglik[k] <- -Inf
penloglik[k] <- -Inf
break
}
mu.matrix <- matrix(mu, nrow=d, ncol=m1) # d by m1 matrix
sigma.matrix <- matrix(sigma, nrow=dsig, ncol=m1) # dsig by m1 matrix
sigma0h.matrix <- matrix(sigma0h, nrow=dsig, ncol=m1) # dsig by m1 matrix
mu.order <- order(mu.matrix[1,])
alpha <- alpha[mu.order]
mu.2 <- mu.matrix[,mu.order]
sigma.2 <- sigma.matrix[,mu.order]
sigma0h.2 <- sigma0h.matrix[,mu.order]
mu <- c(mu.2)
sigma <- c(sigma.2)
sigma0h <- c(sigma0h.2)
}
coefficient <- as.matrix( c(alpha, mu, sigma) ) # at k=3
return (list(coefficient = coefficient, loglik = loglik, penloglik = penloglik))
}
#' @description Generates lists of parameters for initial candidates used by
#' the modified EM test for mixture of multivariate normals.
#' @title mvnmixPhiInit
#' @name mvnmixPhiInit
#' @param y n by d matrix of data
#' @param parlist The parameter estimates as a list containing alpha, mu, and sigma
#' in the form of (alpha = (alpha_1,...,alpha_m),
#' mu = (mu_1',...,mu_m'), sigma = (vech(sigma_1)',...,vech(sigma_m)')
#' @param h h used as index for pivoting
#' @param tau Tau used to split the h-th component
#' @param ninits number of initial values to be generated
#' @return A list with the following items:
#' \item{alpha}{m+1 by ninits matrix for alpha}
#' \item{mu}{d*(m+1) by ninits matrix for mu}
#' \item{sigma}{d*(d+1)/2*(m+1) by ninits matrix for sigma}
mvnmixPhiInit <- function (y, parlist, h, tau, ninits = 1)
{
# if (normalregMix.test.on) # initial values controlled by normalregMix.test.on
# set.seed(normalregMix.test.seed)
n <- nrow(y)
d <- ncol(y)
dsig <- d*(d+1)/2
mu0 <- parlist$mu
sigma0 <- parlist$sigma
alpha0 <- parlist$alpha
m <- length(alpha0)
mu0matrix <- matrix(mu0, nrow=d, ncol=m)
sigma0matrix <- matrix(sigma0, nrow=dsig, ncol=m)
y1 <- y[,1]
mu01 <- mu0matrix[1,]
if (m>=2){
mid <- (mu01[1:(m-1)]+mu01[2:m])/2 # m-1 by 1
lb0 <- c(min(y1),mid) # m by 1
lb <- c(lb0[1:h],lb0[h:m]) # m+1 by 1
ub0 <- c(mid,max(y1)) # m by 1
ub <- c(ub0[1:h],ub0[h:m]) # m+1 by 1
} else {
lb <- c(min(y1),min(y1))
ub <- c(max(y1),max(y1))
}
mu <- matrix(0, nrow=d, ncol=(m+1)*ninits)
sigma <- matrix(0, nrow=dsig, ncol=(m+1)*ninits)
variance <- matrix(0, nrow=d, ncol=(m+1)*ninits)
ninits1 <- floor(ninits/2)
ninits2 <- ninits - ninits1
mu[1,] <- runif((m+1)*ninits, min=lb, max=ub)
sigma01 <- sigma0matrix[1,] # m by 1
sigma.1.hyp <- c(sigma01[1:h],sigma01[h:m]) # m+1 by 1
sigma.1 <- runif((m+1)*ninits,min=sigma.1.hyp*0.25,max=sigma.1.hyp*2)
variance[1,] <- sigma.1
for (i in 2:d){
y.i <- y[,i]
mu0i <- mu0matrix[i,] # m by 1
sigma0i <- sigma0matrix[(i-1)*d-(i-1)*(i-2)/2+1,] # m by 1
mu.i.hyp <- c(mu0i[1:h],mu0i[h:m]) # m+1 by 1
sigma.i.hyp <- c(sigma0i[1:h],sigma0i[h:m]) # m+1 by 1
sd.i.hyp <- sqrt(sigma.i.hyp)
mu.i1 <- runif((m+1)*ninits1, min=mu.i.hyp-sd.i.hyp, max=mu.i.hyp+sd.i.hyp)
mu.i2 <- runif((m+1)*ninits2, min=min(y.i), max=max(y.i))
mu[i,] <- c(mu.i1, mu.i2)
sigma.i <- runif((m+1)*ninits, min=sigma.i.hyp*0.25,max=sigma.i.hyp*2)
variance[i,] <- sigma.i
}
mu <- matrix(mu, nrow=d*(m+1)) # mu was d by (m+1)*ninits matrix
corrmax <- 0.4 # maximum of correlation coefficient in randomly drawn sigma matrix
sigma[1,] <- variance[1,]
sigma[c(2:d),] <- sqrt( t(t(variance[c(2:d),]) * variance[1,]) ) *
runif((d-1)*(m+1)*ninits, min=-corrmax, max=corrmax)
if (d >=3){
for (i in 1:(d-2)){
sigma[i*d-i*(i-1)/2+1,] <- variance[i+1,]
sigma[c((i*d-i*(i-1)/2+2):((i+1)*d-i*(i+1)/2)),] <-
sqrt( t(t(variance[c((i+2):d),]) * variance[(i+1),]) ) *
runif((d-i-1)*(m+1)*ninits, min=-corrmax, max=corrmax)
}
}
sigma[d*(d+1)/2,] <- variance[d,]
sigma <- matrix(sigma, nrow=dsig*(m+1)) # sigma was dsig by (m+1)*ninits matrix
alpha.hyp <- c(alpha0[1:h],alpha0[h:m]) # m+1 by 1
alpha.hyp[h:(h+1)] <- c(alpha.hyp[h]*tau,alpha.hyp[h+1]*(1-tau))
alpha <- matrix(rep.int(alpha.hyp,ninits),nrow=m+1)
list(alpha = alpha, mu = mu, sigma = sigma)
} # end function mvnmixPhiInit
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.