Description Usage Arguments Value Author(s) Examples
Yule-Simon distribution is characterized by the following probability mass function,
f(x;ρ) = ρ B (x, ρ+1)
where the domain is positive integers x \in \lbrace 1,2,… \rbrace with the shape parameter ρ > 0.
1 |
x |
a length-n vector of positive integers. |
weight |
a length-n weight vector. If set as |
a named list containing (weighted) MLE of
shape parameter.
Kisung You
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | # generate data
x = sample(1:20, 50, replace=TRUE)
# fit unweighted
YuleSimon(x)
## Not run:
# put random weights to see effect of weights
niter = 500
ndata = 200
# generate data and fit unweighted MLE
x = sample(1:20, ndata, replace=TRUE)
xmle = YuleSimon(x)
# iteration
vec.rho = rep(0,niter)
for (i in 1:niter){
# random weight
ww = abs(stats::rnorm(ndata))
MLE = YuleSimon(x, weight=ww)
vec.rho[i] = MLE$rho
if ((i%%10) == 0){
print(paste0(" iteration ",i,"/",niter," complete.."))
}
}
# distribution of weighted esti
opar <- par(no.readonly=TRUE)
hist(vec.rho, main="shape 'rho' and MLE")
abline(v=xmle$rho, lwd=3, col="red")
par(opar)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.