Description Usage Arguments Value Author(s) Examples
Log-Normal distribution is characterized by the following probability density function,
f(x;μ,σ) = \frac{1}{xσ √{2π}} \exp≤ft( - \frac{ (\log(x)-μ)^2 }{2σ^2} \right)
where the domain is x \in (0,∞) with two parameters μ for location and σ > 0 for scale.
| 1 | 
| x | a length-n vector of values in (0,∞). | 
| weight | a length-n weight vector. If set as  | 
a named list containing (weighted) MLE of
location parameter μ.
scale parameter σ.
Kisung You
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | #  generate data from exponential distribution
x = abs(stats::rexp(100))
#  fit unweighted
LogNormal(x)
## Not run: 
# put random weights to see effect of weights
niter = 500
ndata = 200
# generate data as above and fit unweighted MLE
x    = abs(stats::rexp(ndata))
xmle = LogNormal(x)
# iterate
vec.mu  = rep(0,niter)
vec.sig = rep(0,niter)
for (i in 1:niter){
  # random weight
  ww = abs(stats::rnorm(ndata))
  MLE = LogNormal(x, weight=ww)
  vec.mu[i]  = MLE$mu
  vec.sig[i] = MLE$sigma
  if ((i%%10) == 0){
    print(paste0(" iteration ",i,"/",niter," complete.."))
  }
}
# distribution of weighted estimates + standard MLE
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,2))
hist(vec.mu, main="location 'mu'")
abline(v=xmle$mu,    lwd=3, col="red")
hist(vec.sig,  main="scale 'sigma'")
abline(v=xmle$sigma, lwd=3, col="blue")
par(opar)
## End(Not run) 
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.