# Bugs----
## metval, names, bugs, Function, xlNames ####
testthat::test_that("metric.values, names, bugs, Function, xlNames", {
# Packages
#library(readxl) # part of BioMonTools
# Data
fn_metnam_xlNames <- file.path(system.file(package = "BioMonTools")
, "extdata"
, "MetricNames.xlsx")
# Import
df_metnam_xlNames <- readxl::read_excel(fn_metnam_xlNames
, sheet = "MetricMetadata"
, skip = 4)
df_metnam_xlNames <- as.data.frame(df_metnam_xlNames)
# Metric Names
metnam_xlNames <- df_metnam_xlNames[df_metnam_xlNames[, "Community"] == "bugs"
, "METRIC_NAME"
, drop = TRUE]
# Benthic data
df_benthos <- BioMonTools::data_benthos_PacNW
# Function
df_metval <- BioMonTools::metric.values(df_benthos
, "bugs"
, boo.marine = TRUE
, boo.Shiny = TRUE)
metnam_fun <- colnames(df_metval)[-(1:3)] # remove first 3 columns
# Check
metnam_len <- length(metnam_fun)
metnam_match <- sum(metnam_fun %in% metnam_xlNames)
#
# # Show non-matches
# metnam_fun[!(metnam_fun %in% metnam_xlNames)]
#
# # test
# testthat::expect_equal(metnam_len, metnam_match)
#
#
# Show non-matches
## A to B
metnam_fun[!(metnam_fun %in% metnam_xlNames)]
## B to A
metnam_xlNames[!(metnam_xlNames %in% metnam_fun)]
# test A to B
testthat::expect_equal(metnam_len, metnam_match)
# test B to A
testthat::expect_equal(metnam_match, metnam_len)
})## Test ~ metric names, bugs, Function, Names ~ END
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## metval, names, bugs, xlScoring, xlNames ####
testthat::test_that("metric.values, names, bugs, xlNames, xlScoring", {
# Packages
#library(readxl) # part of BioMonTools
# Data
fn_metnam_xlNames <- file.path(system.file(package = "BioMonTools")
, "extdata"
, "MetricNames.xlsx")
fn_metnam_xlScoring <- file.path(system.file(package = "BioMonTools")
, "extdata"
, "MetricScoring.xlsx")
# Import
df_metnam_xlNames <- readxl::read_excel(fn_metnam_xlNames
, sheet = "MetricMetadata"
, skip = 4)
df_metnam_xlScoring <- readxl::read_excel(fn_metnam_xlScoring
, sheet = "metric.scoring")
# Convert to data frames
df_metnam_xlNames <- as.data.frame(df_metnam_xlNames)
df_metnam_xlScoring <- as.data.frame(df_metnam_xlScoring)
# Names
metnam_xlNames <- df_metnam_xlNames[df_metnam_xlNames[, "Community"] == "bugs"
, "METRIC_NAME", drop = TRUE]
metnam_xlScoring <- unique(df_metnam_xlScoring[df_metnam_xlScoring[
, "Community"] == "bugs", "METRIC_NAME", drop = TRUE])
# Check
metnam_xlScoring_match <- sum(metnam_xlScoring %in% metnam_xlNames)
metnam_xlScoring_len <- length(metnam_xlScoring)
# Show non-matches
metnam_xlScoring[!(metnam_xlScoring %in% metnam_xlNames)]
# test
testthat::expect_equal(metnam_xlScoring_match, metnam_xlScoring_len)
})## Test - metric.values, names, Excel, Scoring ~ END
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## metval, names, bugs, xlScoring, Function ####
testthat::test_that("metric.values, names, bugs, Function, xlScoring", {
# Packages
#library(readxl) # part of BioMonTools
# Data
fn_metnam_xlScoring <- file.path(system.file(package = "BioMonTools")
, "extdata"
, "MetricScoring.xlsx")
# Import
df_metnam_xlScoring <- readxl::read_excel(fn_metnam_xlScoring
, sheet = "metric.scoring")
df_metnam_xlScoring <- as.data.frame(df_metnam_xlScoring)
# Metric Names
metnam_xlScoring <- unique(df_metnam_xlScoring[df_metnam_xlScoring[
, "Community"] == "bugs", "METRIC_NAME", drop = TRUE])
# Benthic Data
df_benthos <- BioMonTools::data_benthos_PacNW
#df_benthos$SUBCLASS <- NA
# Function
df_metval <- BioMonTools::metric.values(df_benthos
, "bugs"
, boo.marine = TRUE
, boo.Shiny = TRUE)
metnam_fun <- colnames(df_metval)[-(1:3)] # remove first 3 columns
# Check
metnam_len <- length(metnam_xlScoring)
metnam_match <- sum(metnam_xlScoring %in% metnam_fun)
# Show non-matches
metnam_xlScoring[!(metnam_xlScoring %in% metnam_fun)]
# test
testthat::expect_equal(metnam_len, metnam_match)
})## Test ~ metric.values, names, bugs, Function, Names ~ END
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## metsc, num metrics ####
testthat::test_that("metric.scores, index, number metrics", {
# Packages
#library(readxl) # part of BioMonTools
#library(dplyr)
`%>%` <- dplyr::`%>%`
# Data File
fn_xlScoring <- file.path(system.file(package = "BioMonTools")
, "extdata"
, "MetricScoring.xlsx")
# METRICS (metric.scoring)
# Import
df_metsc <- readxl::read_excel(fn_xlScoring
, sheet = "metric.scoring"
, na = c("", "NA", NA))
# Number of metrics by index name and region
df_metsc_cnt_met <- df_metsc %>%
dplyr::group_by(INDEX_NAME, INDEX_CLASS) %>%
dplyr::summarize(n_met_all = dplyr::n()
, n_met_single = sum(!is.na(SingleValue_Add))
, n_met_total = n_met_all - n_met_single
, .groups = "drop_last")
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Need to take out GA single value metrics
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Fix NJ A/B
df_metsc_cnt_met[df_metsc_cnt_met$INDEX_NAME == "NJ_NorthernFish_2005"
, "n_met_total"] <- 10
# METRICS (index.scoring)
# Import
df_indsc <- readxl::read_excel(fn_xlScoring, sheet = "index.scoring")
# Number of metrics by index name and region
valid_ScoreRegime <- c("AVERAGE"
, "SUM"
, "AVERAGE_100"
, "AVERAGE_010"
, "AVERAGESCALE_100"
, "AVERAGE_100_M10_R2"
, "AVERAGE_100_M10_R3")
df_indsc_cnt_met <- df_indsc %>%
dplyr::filter(ScoreRegime %in% valid_ScoreRegime) %>%
dplyr::select(INDEX_NAME, INDEX_CLASS, NumMetrics)
# Merge
df_nummet_merge <- merge(df_metsc_cnt_met, df_indsc_cnt_met
, all = TRUE)
# test vectors
nummet_metsc <- df_nummet_merge[, "n_met_total"]
nummet_indsc <- as.numeric(df_nummet_merge[, "NumMetrics"])
# Need to take out GA single value metrics
matches <- nummet_metsc == nummet_indsc
df_nummet_merge[!(matches %in% TRUE), ]
# test
testthat::expect_equal(nummet_metsc, nummet_indsc)
})## Test ~ metric.scores, index, number metrics ~ END
# Fish ----
## metval, names, fish, Function, xlNames ####
# Need fish data
testthat::test_that("metric.values, names, fish, Function, xlNames", {
#Packages
#library(readxl) # part of BioMonTools
# Data
fn_metnam_xlNames <- file.path(system.file(package = "BioMonTools")
, "extdata"
, "MetricNames.xlsx")
# Import
df_metnam_xlNames <- readxl::read_excel(fn_metnam_xlNames
, sheet = "MetricMetadata"
, skip = 4)
df_metnam_xlNames <- as.data.frame(df_metnam_xlNames)
# Metric Names
metnam_xlNames <- df_metnam_xlNames[df_metnam_xlNames[, "Community"] == "fish"
, "METRIC_NAME"
, drop = TRUE]
# fish data
df_fish <- BioMonTools::data_fish_MBSS
# Munge (v1.0.2.9015, 2024-04-29)
df_fish$TOLVAL2 <- NA_integer_
df_fish$BCG_ATTR2 <- NA_character_
# Function
df_metval <- BioMonTools::metric.values(df_fish
, "fish"
, boo.Shiny = TRUE)
metnam_fun <- colnames(df_metval)[-(1:5)] # remove first few columns
# Check
metnam_len <- length(metnam_fun)
metnam_match <- sum(metnam_fun %in% metnam_xlNames)
# Show non-matches
## A to B
metnam_fun[!(metnam_fun %in% metnam_xlNames)]
## B to A
metnam_xlNames[!(metnam_xlNames %in% metnam_fun)]
# test A to B
testthat::expect_equal(metnam_len, metnam_match)
# test B to A
testthat::expect_equal(metnam_match, metnam_len)
})## Test ~ metric names, fish, Function, Names ~ END
## metval, names, fish, xlScoring, xlNames ####
testthat::test_that("metric.values, names, fish, xlNames, xlScoring", {
# Packages
#library(readxl) # part of BioMonTools
# Data
fn_metnam_xlNames <- file.path(system.file(package = "BioMonTools")
, "extdata"
, "MetricNames.xlsx")
fn_metnam_xlScoring <- file.path(system.file(package = "BioMonTools")
, "extdata"
, "MetricScoring.xlsx")
# Import
df_metnam_xlNames <- readxl::read_excel(fn_metnam_xlNames
, sheet = "MetricMetadata"
, skip = 4)
df_metnam_xlScoring <- readxl::read_excel(fn_metnam_xlScoring
, sheet = "metric.scoring")
# Convert to data frames
df_metnam_xlNames <- as.data.frame(df_metnam_xlNames)
df_metnam_xlScoring <- as.data.frame(df_metnam_xlScoring)
# Names
metnam_xlNames <- df_metnam_xlNames[df_metnam_xlNames[, "Community"] == "fish"
, "METRIC_NAME", drop = TRUE]
metnam_xlScoring <- unique(df_metnam_xlScoring[df_metnam_xlScoring[
, "Community"] == "fish", "METRIC_NAME", drop = TRUE])
# Check
metnam_xlScoring_match <- sum(metnam_xlScoring %in% metnam_xlNames)
metnam_xlScoring_len <- length(metnam_xlScoring)
# Show non-matches
metnam_xlScoring[!(metnam_xlScoring %in% metnam_xlNames)]
# test
testthat::expect_equal(metnam_xlScoring_match, metnam_xlScoring_len)
})## Test - metric.values, names, Excel, Scoring ~ END
## metval, names, fish, xlScoring, Function ####
testthat::test_that("metric.values, names, fish, Function, xlScoring", {
# Packages
#library(readxl) # part of BioMonTools
# Data
fn_metnam_xlScoring <- file.path(system.file(package = "BioMonTools")
, "extdata"
, "MetricScoring.xlsx")
# Import
df_metnam_xlScoring <- readxl::read_excel(fn_metnam_xlScoring
, sheet = "metric.scoring")
df_metnam_xlScoring <- as.data.frame(df_metnam_xlScoring)
# Metric Names
metnam_xlScoring <- unique(df_metnam_xlScoring[df_metnam_xlScoring[
, "Community"] == "fish", "METRIC_NAME", drop = TRUE])
# Fish Data
df_fish <- BioMonTools::data_fish_MBSS
#df_benthos$SUBCLASS <- NA
# Munge (v1.0.2.9015, 2024-04-29)
df_fish$TOLVAL2 <- NA_integer_
df_fish$BCG_ATTR2 <- NA_character_
# Function
df_metval <- BioMonTools::metric.values(df_fish
, "fish"
, boo.Shiny = TRUE)
metnam_fun <- colnames(df_metval)[-(1:5)] # remove first few columns
# Check
metnam_len <- length(metnam_xlScoring)
metnam_match <- sum(metnam_xlScoring %in% metnam_fun)
# Show non-matches
metnam_xlScoring[!(metnam_xlScoring %in% metnam_fun)]
# test
testthat::expect_equal(metnam_len, metnam_match)
})## Test ~ metric.values, names, bugs, Function, Names ~ END
# Algae ----
## metval, names, algae, Function, xlNames ####
testthat::test_that("metric.values, names, algae, Function, xlNames", {
# Packages
#library(readxl) # part of BioMonTools
# Data
fn_metnam_xlNames <- file.path(system.file(package = "BioMonTools")
, "extdata"
, "MetricNames.xlsx")
# Import
df_metnam_xlNames <- readxl::read_excel(fn_metnam_xlNames
, sheet = "MetricMetadata"
, skip = 4)
df_metnam_xlNames <- as.data.frame(df_metnam_xlNames)
# Metric Names
metnam_xlNames <- df_metnam_xlNames[df_metnam_xlNames[, "Community"] == "algae"
, "METRIC_NAME"
, drop = TRUE]
# Algae data
df_diatoms <- BioMonTools::data_diatom_mmi_dev
# Function
df_metval <- BioMonTools::metric.values(df_diatoms
, "algae"
, boo.Shiny = TRUE)
metnam_fun <- colnames(df_metval)[-(1:3)] # remove first 3 columns
# Check
metnam_len <- length(metnam_fun)
metnam_match <- sum(metnam_fun %in% metnam_xlNames)
# Show non-matches
## A to B
metnam_fun[!(metnam_fun %in% metnam_xlNames)]
## B to A
metnam_xlNames[!(metnam_xlNames %in% metnam_fun)]
# test A to B
testthat::expect_equal(metnam_len, metnam_match)
# test B to A
testthat::expect_equal(metnam_match, metnam_len)
})## Test ~ metric names, algae, Function, Names ~ END
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## metval, names, algae, xlScoring, xlNames ####
testthat::test_that("metric.values, names, algae, xlScoring, xlNames", {
# Packages
#library(readxl) # part of BioMonTools
# Data
fn_metnam_xlNames <- file.path(system.file(package = "BioMonTools")
, "extdata"
, "MetricNames.xlsx")
fn_metnam_xlScoring <- file.path(system.file(package = "BioMonTools")
, "extdata"
, "MetricScoring.xlsx")
# Import
df_metnam_xlNames <- readxl::read_excel(fn_metnam_xlNames
, sheet = "MetricMetadata"
, skip = 4)
df_metnam_xlScoring <- readxl::read_excel(fn_metnam_xlScoring
, sheet = "metric.scoring")
# Convert to data frames
df_metnam_xlNames <- as.data.frame(df_metnam_xlNames)
df_metnam_xlScoring <- as.data.frame(df_metnam_xlScoring)
# Names
metnam_xlNames <- df_metnam_xlNames[df_metnam_xlNames[, "Community"] == "algae"
, "METRIC_NAME", drop = TRUE]
metnam_xlScoring <- unique(df_metnam_xlScoring[df_metnam_xlScoring[
, "Community"] == "algae", "METRIC_NAME", drop = TRUE])
# Check
metnam_xlScoring_match <- sum(metnam_xlScoring %in% metnam_xlNames)
metnam_xlScoring_len <- length(metnam_xlScoring)
# Show non-matches
metnam_xlScoring[!(metnam_xlScoring %in% metnam_xlNames)]
# test
testthat::expect_equal(metnam_xlScoring_match, metnam_xlScoring_len)
})## Test - metric.values, names, Excel, Scoring ~ END
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## metval, names, algae, xlScoring, Function ####
testthat::test_that("metric.values, names, algae, xlScoring, Function", {
# Packages
#library(readxl) # part of BioMonTools
# Data
fn_metnam_xlScoring <- file.path(system.file(package = "BioMonTools")
, "extdata"
, "MetricScoring.xlsx")
# Import
df_metnam_xlScoring <- readxl::read_excel(fn_metnam_xlScoring
, sheet = "metric.scoring")
df_metnam_xlScoring <- as.data.frame(df_metnam_xlScoring)
# Metric Names
metnam_xlScoring <- unique(df_metnam_xlScoring[df_metnam_xlScoring[
, "Community"] == "algae", "METRIC_NAME", drop = TRUE])
# Algae data
df_diatoms <- BioMonTools::data_diatom_mmi_dev
# Function
df_metval <- BioMonTools::metric.values(df_diatoms
, "algae"
, boo.Shiny = TRUE)
metnam_fun <- colnames(df_metval)[-(1:3)] # remove first 3 columns
# Check
metnam_len <- length(metnam_xlScoring)
metnam_match <- sum(metnam_xlScoring %in% metnam_fun)
# Show non-matches
metnam_xlScoring[!(metnam_xlScoring %in% metnam_fun)]
metnam_xlScoring[!(metnam_xlScoring %in% metnam_fun)]
# test
testthat::expect_equal(metnam_len, metnam_match) # fails due to structure
})## Test ~ metric.values, names, algae, Function, Names ~ END
# Coral ----
## metval, names, coral, Function, xlNames ####
testthat::test_that("metric.values, names, coral, Function, xlNames", {
# Packages
#library(readxl) # part of BioMonTools
# Data
fn_metnam_xlNames <- file.path(system.file(package = "BioMonTools")
, "extdata"
, "MetricNames.xlsx")
# Import
df_metnam_xlNames <- readxl::read_excel(fn_metnam_xlNames
, sheet = "MetricMetadata"
, skip = 4)
df_metnam_xlNames <- as.data.frame(df_metnam_xlNames)
# Metric Names
metnam_xlNames <- df_metnam_xlNames[df_metnam_xlNames[, "Community"] == "coral"
, "METRIC_NAME"
, drop = TRUE]
# coral data
df_corals <- BioMonTools::data_coral_bcg_metric_dev
# Function
df_metval <- BioMonTools::metric.values(df_corals
, "coral"
, boo.Shiny = TRUE)
metnam_fun <- colnames(df_metval)[-(1:3)] # remove first 3 columns
# Check
metnam_len <- length(metnam_fun)
metnam_match <- sum(metnam_fun %in% metnam_xlNames)
# Show non-matches
## A to B
metnam_fun[!(metnam_fun %in% metnam_xlNames)]
## B to A
metnam_xlNames[!(metnam_xlNames %in% metnam_fun)]
# test A to B
testthat::expect_equal(metnam_len, metnam_match)
# test B to A
testthat::expect_equal(metnam_match, metnam_len)
})## Test ~ metric names, coral, Function, Names ~ END
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## metval, names, coral, xlScoring, xlNames ####
testthat::test_that("metric.values, names, coral, xlScoring, xlNames", {
# Packages
#library(readxl) # part of BioMonTools
# Data
fn_metnam_xlNames <- file.path(system.file(package = "BioMonTools")
, "extdata"
, "MetricNames.xlsx")
fn_metnam_xlScoring <- file.path(system.file(package = "BioMonTools")
, "extdata"
, "MetricScoring.xlsx")
# Import
df_metnam_xlNames <- readxl::read_excel(fn_metnam_xlNames
, sheet = "MetricMetadata"
, skip = 4)
df_metnam_xlScoring <- readxl::read_excel(fn_metnam_xlScoring
, sheet = "metric.scoring")
# Convert to data frames
df_metnam_xlNames <- as.data.frame(df_metnam_xlNames)
df_metnam_xlScoring <- as.data.frame(df_metnam_xlScoring)
# Names
metnam_xlNames <- df_metnam_xlNames[df_metnam_xlNames[, "Community"] == "coral"
, "METRIC_NAME", drop = TRUE]
metnam_xlScoring <- unique(df_metnam_xlScoring[df_metnam_xlScoring[
, "Community"] == "coral", "METRIC_NAME", drop = TRUE])
# Check
metnam_xlScoring_match <- sum(metnam_xlScoring %in% metnam_xlNames)
metnam_xlScoring_len <- length(metnam_xlScoring)
# Show non-matches
metnam_xlScoring[!(metnam_xlScoring %in% metnam_xlNames)]
# test
testthat::expect_equal(metnam_xlScoring_match, metnam_xlScoring_len)
})## Test - metric.values, names, Excel, Scoring ~ END
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## metval, names, coral, xlScoring, Function ####
testthat::test_that("metric.values, names, coral, xlScoring, Function", {
# Packages
#library(readxl) # part of BioMonTools
# Data
fn_metnam_xlScoring <- file.path(system.file(package = "BioMonTools")
, "extdata"
, "MetricScoring.xlsx")
# Import
df_metnam_xlScoring <- readxl::read_excel(fn_metnam_xlScoring
, sheet = "metric.scoring")
df_metnam_xlScoring <- as.data.frame(df_metnam_xlScoring)
# Metric Names
metnam_xlScoring <- unique(df_metnam_xlScoring[df_metnam_xlScoring[
, "Community"] == "coral", "METRIC_NAME", drop = TRUE])
# coral data
df_corals <- BioMonTools::data_coral_bcg_metric_dev
# Function
df_metval <- BioMonTools::metric.values(df_corals
, "coral"
, boo.Shiny = TRUE)
metnam_fun <- colnames(df_metval)[-(1:3)] # remove first 3 columns
# Check
metnam_len <- length(metnam_xlScoring)
metnam_match <- sum(metnam_xlScoring %in% metnam_fun)
# Show non-matches
metnam_xlScoring[!(metnam_xlScoring %in% metnam_fun)]
metnam_xlScoring[!(metnam_xlScoring %in% metnam_fun)]
# test
testthat::expect_equal(metnam_len, metnam_match) # fails due to structure
})## Test ~ metric.values, names, coral, Function, Names ~ END
# Excel ----
## metval, xlNames, NA ####
testthat::test_that("metric.values, xlNames, description", {
# Packages
#library(readxl) # part of BioMonTools
# Data
fn_metnam_xlNames <- file.path(system.file(package = "BioMonTools")
, "extdata"
, "MetricNames.xlsx")
# Import
df_metnam_xlNames <- readxl::read_excel(fn_metnam_xlNames
, sheet = "MetricMetadata"
, skip = 4)
df_metnam_xlNames <- as.data.frame(df_metnam_xlNames)
# Num Metrics, Name
met_name_len <- length(df_metnam_xlNames$METRIC_NAME)
# Description, NA
num_NA_desc <- sum(is.na(df_metnam_xlNames$Description))
### test, NA, DESCRIPTION ----
testthat::expect_equal(num_NA_desc, 0)
# Description, NA
num_NA_comm <- sum(is.na(df_metnam_xlNames$Community))
### test, NA, COMMENTS ----
testthat::expect_equal(num_NA_comm, 0)
})## Test ~ metval, xlNames, NA ~ END
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.