#' @title Daily stats for a given data file
#'
#' @description Generates daily stats (N, mean, min, max, range, std deviation)
#' for the specified time period before a given date. Output is a multiple
#' column CSV (Date and Parameter Name by statistic) and a report (HTML or DOCX)
#' with plots. Input is the ouput file of the QC operation of ContDataQC().
#'
#' @details The input is output file of the QC operation in ContDataQC(). That
#' is, a file with Date.Time, and parameters (matching formats in config.R).
#' One or two parameters can be analyzed at a time.
#' Requires doBy library for the daily statistics summary
#
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Erik.Leppo@tetratech.com (EWL)
# 20170905
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#' @param fun.myFile Filename (no directory) of data file. Must be CSV file.
#' @param fun.myDir.import Directory for import data.
#' Default is current working directory.
#' @param fun.myDir.export Directory for export data.
#' Default is current working directory.
#' @param fun.myParam.Name Column name in myFile to perform summary statistics.
#' One or two parameters can be specified.
#' @param fun.myDateTime.Name Column name in myFile for date time.
#' Default = "Date.Time".
#' @param fun.myDateTime.Format Format of DateTime field.
#' Default = \%Y-\%m-\%d \%H:\%M:\%S.
#' @param fun.myThreshold Value to draw line on plot. For example, a regulatory
#' limit. Default = NA
#' @param fun.myConfig Configuration file to use for this data analysis.
#' The default is always loaded first so only "new" values need to be included.
#' This is the easiest way to control date and time formats.
#' @return Returns a data frame
#' @keywords internal
#' @examples
#' #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#' # Save example files from Package to use for example
#' ## This step not needed for users working on their own files
#' df.x <- DATA_period_test2_Aw_20130101_20141231
#' write.csv(df.x,"DATA_period_test2_Aw_20130101_20141231.csv")
#' myFile <- "config.ExcludeFailsFalse.R"
#' file.copy(file.path(path.package("ContDataQC"), "extdata", myFile)
#' , file.path(getwd(), myFile))
#' #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#'
#' # Load File to use for PeriodStats
#' myDir <- tempdir()
#' myFile <- "DATA_period_test2_AW_20130101_20141231.csv"
#' df.x <- read.csv(file.path(myDir, myFile))
#'
#' # function inputs
#' myFile <- "DATA_period_test2_Aw_20130101_20141231.csv"
#' myDir.import <- tempdir()
#' myParam.Name <- "Water.Temp.C"
#' myDateTime.Name <- "Date.Time"
#' myDateTime.Format <- "%Y-%m-%d %H:%M:%S"
#' myThreshold <- 20
#' myConfig <- ""
#' # Custom Config
#' myConfig.Fail.Include <- "config.ExcludeFailsFalse.R"
#'
#' # Run Function
#' ## Example 1. default report format (html)
#' SumStats.updated(myFile
#' , myDir.import
#' , myParam.Name
#' , myDateTime.Name
#' , myDateTime.Format
#' , myThreshold
#' , myConfig)
#'
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#' @export
SumStats.updated <- function(fun.myFile
, fun.myDir.import = getwd()
, fun.myParam.Name
, fun.myDateTime.Name = "Date.Time"
, fun.myDateTime.Format = NA
, fun.myThreshold = NA
, fun.myConfig = ""
)
{##FUN.fun.Stats.START
# 00. Debugging Variables####
boo_DEBUG <- FALSE
if (boo_DEBUG == TRUE) {
fun.myFile <- "DATA_test2_Aw_20130101_20141231.csv"
fun.myDir.import <- file.path(".","data-raw")
fun.myParam.Name <- c("Water.Temp.C", "Sensor.Depth.ft")
fun.myDateTime.Name <- "Date.Time"
fun.myDateTime.Format <- NA
fun.myThreshold <- 20
fun.myConfig <- ""
# Load environment
#ContData.env <- new.env(parent = emptyenv()) # in config.R
source(file.path(getwd(), "R", "config.R"), local = TRUE)
# might have to load manually
}##IF.boo_DEBUG.END
# 0a.0. Load environment
# config file load, 20170517
if (fun.myConfig != "") {
config.load(fun.myConfig)
}##IF.fun.myConfig.START
# change the default settings in Environment if needed
# ContData.env$myName.Flag <- "Flag" # flag prefix
# ContData.env$myStats.Fails.Exclude <- TRUE #FALSE #TRUE
# ContData.env$myFlagVal.Fail <- "F"
# 0b.2. Format, DateTime
if (is.na(fun.myDateTime.Format)) {##IF.fun.myConfig.START
fun.myDateTime.Format <- ContData.env$myFormat.DateTime
}##IF.fun.myConfig.START
# 2.0. Load Data####
# 2.1. Error Checking, make sure file exists
if (fun.myFile %in% list.files(path = fun.myDir.import) == FALSE) {
#
myMsg <- paste0("Provided file ("
,fun.myFile
,") does not exist in the provided import directory ("
,fun.myDir.import
,").")
stop(myMsg)
#
}##IF.file.END
# 2.2. Load File
df.load <- utils::read.csv(file.path(fun.myDir.import, fun.myFile)
,as.is = TRUE, na.strings = c("", "NA"))
# 2.3. Error Checking, data field names
param.len <- length(fun.myParam.Name)
myNames2Match <- c(fun.myParam.Name, fun.myDateTime.Name)
#myNames2Match %in% names(df.load)
if (sum(myNames2Match %in% names(df.load)) != (param.len + 1)) {
# find non match
Names.NonMatch <- myNames2Match[is.na(match(myNames2Match, names(df.load)))]
myMsg <- paste0("Provided data file ("
,fun.myFile
,") does not contain the column name ("
,Names.NonMatch,").")
stop(myMsg)
}##IF.match.END
# 2.4. Error Checking, DateTime format
#df.load[,fun.myDateTime.Name] <- as.Date()
# 2.5. Number of Parameters
# Check for 1 vs. 2 parameters
param.len <- length(fun.myParam.Name)
# Loop, Stats ####
if (boo_DEBUG == TRUE) {
i <- fun.myParam.Name[1]
}##IF.boo_DEBUG.END
# 20181114, added for 2nd parameter
df.list <- list()
for (i in fun.myParam.Name) {
#
i.num <- match(i, fun.myParam.Name)
print(paste0("WORKING on parameter (", i.num,"/",param.len,"); ", i))
utils::flush.console()
# QC.0. FLAGs ####
# check if flag field is in data
# Default values from config.R
# ContData.env$myFlagVal.Fail <- "F"
# ContData.env$myName.Flag <- "Flag" # flag prefix
# ContData.env$myName.Flag.WaterTemp <-
# paste(ContData.env$myName.Flag,ContData.env$myName.WaterTemp,sep=".")
# #Trigger for Stats to exclude (TRUE) or include (FALSE) where flag = "fail"
# ContData.env$myStats.Fails.Exclude <- TRUE
#
# QC.1. Define parameter flag field
## If flag parameter names is different from config then it won't be found
myParam.Name.Flag <- paste(ContData.env$myName.Flag, i, sep = ".")
# QC.2. Modify columns to keep (see 3.2.) based on presence of "flag" field
## give user feedback
if (myParam.Name.Flag %in% names(df.load)) {
# QC.2.1. Flag field present in data
myCol <- c(fun.myDateTime.Name, i, myParam.Name.Flag)
# QC.2.1.1. Convert "Fails" to NA where appropriate
if (ContData.env$myStats.Fails.Exclude == TRUE) {
# find Fails
myFails <- df.load[, myParam.Name.Flag] == ContData.env$myFlagVal.Fail
myFails.Num <- sum(myFails)
# convert to NA
df.load[myFails, i] <- NA
# Message to User
myMsg <- paste0("QC Flag field was found and "
, myFails.Num
, " fails were excluded based on user's config file.")
} else {
# Message to User
myMsg <- "QC Flag field was found and fails were all
included based on user's config file."
}##IF.Fails.END
#
} else {
# QC.2.2. No Flag column
myCol <- c(fun.myDateTime.Name, i)
myMsg <- "No QC Flag field was found so all data points were used in
calculations."
}##IF.flagINnames.END
cat(paste0(myMsg, "\n"))
# 3. Munge Data####
# 3.1. Subset Fields
df.param <- df.load[,myCol]
# 3.2. Add "Date" field
fd01 <- "%Y-%m-%d" #ContData.env$myFormat.Date
myDate.Name <- "Date"
df.param[,myDate.Name] <- as.Date(df.param[,fun.myDateTime.Name], fd01)
# 3.3. Data column to numeric
# may get "NAs introduced by coercion" so suppress
df.param[,i] <- suppressWarnings(as.numeric(df.param[,i]))
#~~~~~~~~~~~~~~~~~~~~~~~~~
# OLD method using doBy
# 4. Daily Stats for data####
# Calculate daily mean, max, min, range, sd, n
# 4.1. Define FUNCTION for use with summaryBy
myQ <- c(0.01, 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, 0.99)
myFUN.Names <- c("mean"
, "median"
, "min"
, "max"
, "range"
, "sd"
, "var"
, "cv"
, "n"
,paste("q"
, formatC(100 * myQ, width = 2, flag = "0")
, sep = ""))
#
myFUN.sumBy <- function(x, ...){
c(mean = mean(x ,na.rm = TRUE)
, median = stats::median(x, na.rm = TRUE)
, min = min(x, na.rm = TRUE)
, max = max(x, na.rm = TRUE)
, range = max(x, na.rm = TRUE) - min(x, na.rm = TRUE)
, sd = stats::sd(x, na.rm = TRUE)
, var = stats::var(x, na.rm = TRUE)
, cv = stats::sd(x, na.rm = TRUE) / mean(x, na.rm = TRUE)
, n = sum(!is.na(x))
, q = stats::quantile(x, probs = myQ, na.rm = TRUE)
)
}##FUN.myFUN.sumBy.END
# 4.2. Rename data column (summaryBy doesn't like variables)
names(df.param)[match(i,names(df.param))] <- "x"
# 4.2. Summary
df.summary <- doBy::summaryBy(x ~ Date
, data = df.param
, FUN = myFUN.sumBy
, na.rm = TRUE
, var.names = i)
new.list <- list(df = df.summary)
names(new.list) <- i
df.list <- c(df.list,new.list)
}##FOR.i.END
return(df.list)
}##FUNCTION.END
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.