#' Plots the raw, non-normalized TIC values.
#' @param data the FIP data to plot.
#' @param basename the basename (identifying a case) for the plot.
#' @param plotFormat the format, passed to \code{ggplot2::ggsave}.
#' @param plotDimensions the dimensions of the plot.
#' @param color_scale the shared color scale to identify fragment and adduct pairs.
#' @return the ggplot object.
#' @export
plotRawTicVsTotalIonCurrent <- function(data, basename, plotFormat="png", plotDimensions=list(width=11.69, height=8.27), color_scale = ggplot2::scale_colour_hue()) {
rawTicVsTotalIonCurrentPlot <-
ggplot2::qplot(
x = rawTic,
y = totalIonCurrent,
data = data,
color = fragadd,
geom = "point",
main = paste(unique(data$species), unique(data$polarity), unique(data$group), sep = " ")
) + ggplot2::labs(colour = 'Fragment') +
ggplot2::facet_wrap(fragadd ~ data$`foundMassRange[ppm]`, ncol =6, labeller = ggplot2::label_wrap_gen(multi_line=FALSE)) +
ggplot2::theme_bw(base_size = 12, base_family = 'Helvetica') +
ggplot2::theme(axis.text.x = ggplot2::element_text(
angle = 90,
vjust = 0.5,
hjust = 1
)) +
ggplot2::ylab("Total Ion Current [a.u.]") + ggplot2::xlab("Raw Total Ion Current [a.u.]") +
color_scale
ggplot2::ggsave(
rawTicVsTotalIonCurrentPlot,
filename = paste0(basename, "-rawTic-vs-Tic.", plotFormat),
width = plotDimensions$width,
height = plotDimensions$height
)
return(rawTicVsTotalIonCurrentPlot)
}
#' Plots a PPM deviation boxplot for all fragments.
#' @param data the FIP data to plot.
#' @param basename the basename (identifying a case) for the plot.
#' @param plotFormat the format, passed to \code{ggplot2::ggsave}.
#' @param plotDimensions the dimensions of the plot.
#' @param color_scale the shared color scale to identify fragment and adduct pairs.
#' @return the ggplot object.
#' @export
plotFragmentPpmBoxplot <- function(data, basename, plotFormat="png", plotDimensions=list(width=11.69, height=8.27), color_scale = ggplot2::scale_colour_hue()) {
fpbPlot <-
ggplot2::qplot(
x = fragadd,
y = (calculatedMass - foundMass) ,
data = data,
color = fragadd,
geom = c("violin"),
main = paste(unique(data$species), unique(data$polarity), unique(data$group), sep = " ")
) + ggplot2::labs(colour = 'Fragment') +
ggplot2::theme_bw(base_size = 12, base_family = 'Helvetica') +
ggplot2::facet_wrap( ~ data$`foundMassRange[ppm]`, ncol =
6, labeller = ggplot2::label_wrap_gen(multi_line=FALSE)) + ggplot2::ylab(expression(paste(
Delta, " of calculated and found m/z", sep = " "
))) + ggplot2::xlab("Fragment") + ggplot2::geom_jitter(ggplot2::aes(
x = fragadd,
y = (calculatedMass - foundMass),
color = fragadd
),
data = data,
alpha = 0.1) +
ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 90, hjust = 1)) +
color_scale
ggplot2::ggsave(
fpbPlot,
filename = paste0(basename, "-frag-ppm-box.", plotFormat),
width = plotDimensions$width,
height = plotDimensions$height
)
return(fpbPlot)
}
#' Plots precursor collision energy vs found raw intensity.
#' @param data the FIP data to plot.
#' @param basename the basename (identifying a case) for the plot.
#' @param plotFormat the format, passed to \code{ggplot2::ggsave}.
#' @param plotDimensions the dimensions of the plot.
#' @param color_scale the shared color scale to identify fragment and adduct pairs.
#' @return the ggplot object.
#' @export
plotPrecCollEnergyVsFoundIntensity <- function(data, basename, plotFormat="png", plotDimensions=list(width=11.69, height=8.27), color_scale = ggplot2::scale_colour_hue()) {
message("precursorCollisionEnergy-vs-foundIntensity")
pceFiPlot <-
ggplot2::qplot(
x = precursorCollisionEnergy,
y = foundIntensity,
data = data,
color = fragadd,
geom = c("point"),
main = paste(
unique(data$species),
unique(data$polarity),
unique(data$group),
sep = " "
)
) + ggplot2::geom_smooth(
method = "loess",
colour = "blue",
se = TRUE,
level = 0.95
) + ggplot2::scale_x_continuous(breaks = seq(from=-10, to=plyr::round_any(max(data$precursorCollisionEnergy), 10, f = ceiling)+10, by=10)) +
ggplot2::theme_bw(base_size = 12, base_family = 'Helvetica') +
ggplot2::ylab("Absolute Intensity [a.u.]") +
ggplot2::xlab(flipr::collisionEnergyLabel(data)) +
ggplot2::labs(colour = 'Fragment') +
ggplot2::facet_wrap(fragadd ~ data$`foundMassRange[ppm]`, ncol = 6, labeller = ggplot2::label_wrap_gen(multi_line=FALSE)) +
color_scale
ggplot2::ggsave(
pceFiPlot,
filename = paste0(basename, "-precCE-vs-I.", plotFormat),
width = plotDimensions$width,
height = plotDimensions$height
)
return(pceFiPlot)
}
#' Plots precursor collision energy vs. total scan intensity normalized relative fragment intensity in separate panels.
#' @param data the FIP data to plot.
#' @param basename the basename (identifying a case) for the plot.
#' @param plotFormat the format, passed to \code{ggplot2::ggsave}.
#' @param plotDimensions the dimensions of the plot.
#' @param color_scale the shared color scale to identify fragment and adduct pairs.
#' @return the ggplot object.
#' @export
plotPrecCollEnergyVsScanRelativeIntensityNormalized <- function(data, basename, plotFormat="png", plotDimensions=list(width=11.69, height=8.27), color_scale = ggplot2::scale_colour_hue()) {
message("precursorCollisionEnergy-vs-foundIntensity-scan-relative-normalized")
precCeVsIsrnPlot <-
ggplot2::qplot(
x = precursorCollisionEnergy,
y = scanRelativeIntensity,
data = data,
color = fragadd,
geom = c("point"),
main = paste(
unique(data$species),
unique(data$polarity),
unique(data$group),
sep = " "
)
) + ggplot2::geom_point(
ggplot2::aes(x = precursorCollisionEnergy, y = foundIntensity, color="darkgray", alpha=0.7), show.legend = FALSE
) + ggplot2::geom_smooth(
method = "loess",
colour = "blue",
se = TRUE,
level = 0.95
) + ggplot2::scale_x_continuous(breaks = seq(from=-10, to=plyr::round_any(max(data$precursorCollisionEnergy), 10, f = ceiling)+10, by=10)) +
ggplot2::theme_bw(base_size = 12, base_family = 'Helvetica') +
ggplot2::ylab("Scan Relative Intensity") +
ggplot2::xlab(flipr::collisionEnergyLabel(data)) +
ggplot2::labs(colour = 'Fragment') +
ggplot2::facet_wrap(fragadd ~ data$`foundMassRange[ppm]`, ncol = 6, labeller = ggplot2::label_wrap_gen(multi_line=FALSE)) + ggplot2::ylim(0,1) +
color_scale
ggplot2::ggsave(
precCeVsIsrnPlot,
filename = paste0(basename, "-precCE-vs-I-srn.", plotFormat),
width = plotDimensions$width,
height = plotDimensions$height
)
return(precCeVsIsrnPlot)
}
#' Plots precursor collision energy vs. total scan intensity normalized relative fragment intensity overlaid on one panel.
#' @param data the FIP data to plot.
#' @param basename the basename (identifying a case) for the plot.
#' @param plotFormat the format, passed to \code{ggplot2::ggsave}.
#' @param plotDimensions the dimensions of the plot.
#' @param color_scale the shared color scale to identify fragment and adduct pairs.
#' @return the ggplot object.
#' @export
plotPrecCollEnergyVsScanRelativeIntensityOverlay <- function(data, basename, plotFormat="png", plotDimensions=list(width=11.69, height=8.27), color_scale = ggplot2::scale_colour_hue()) {
message(
"precursorCollisionEnergy-vs-foundIntensity-scan-relative-normalized-overlay"
)
precCeVsIsrnOverlayPlot <-
ggplot2::qplot(
x = precursorCollisionEnergy,
y = scanRelativeIntensity,
data = data,
color = fragadd,
fill = fragadd,
# geom = c("boxplot"),
main = paste(
unique(data$species),
unique(data$polarity),
unique(data$group),
sep = " "
)
) +
ggplot2::geom_area(position = "identity", alpha = 0.3) +
ggplot2::scale_x_continuous(breaks = seq(from=-10, to=plyr::round_any(max(data$precursorCollisionEnergy), 10, f = ceiling)+10, by=10)) +
ggplot2::ylab("Scan Relative Intensity") +
ggplot2::xlab(flipr::collisionEnergyLabel(data)) +
ggplot2::labs(colour = 'Fragment', fill = 'Fragment') +
ggplot2::facet_wrap(~ data$`foundMassRange[ppm]`, ncol = 2, labeller = ggplot2::label_wrap_gen(multi_line=FALSE)) + ggplot2::ylim(0,1) +
ggplot2::theme_bw(base_size = 12, base_family = 'Helvetica') +
color_scale
ggplot2::ggsave(
precCeVsIsrnOverlayPlot,
filename = paste0(basename, "-precCE-vs-I-srn-overlay.", plotFormat),
width = plotDimensions$width,
height = plotDimensions$height
)
return(precCeVsIsrnOverlayPlot)
}
#' Plots the precursor collision energy vs. the fragment mass error in ppm.
#' @param data the FIP data to plot.
#' @param basename the basename (identifying a case) for the plot.
#' @param plotFormat the format, passed to \code{ggplot2::ggsave}.
#' @param plotDimensions the dimensions of the plot.
#' @param color_scale the shared color scale to identify fragment and adduct pairs.
#' @return the ggplot object.
#' @export
plotPrecCollEnergyVsMassErrorPpm <- function(data, basename, plotFormat="png", plotDimensions=list(width=11.69, height=8.27), color_scale = ggplot2::scale_colour_hue()) {
message("precursorCollisionEnergy-vs-mass-error-ppm")
precCeVsMerrPpmmPlot <-
ggplot2::qplot(
x = precursorCollisionEnergy,
y = `foundMassError[ppm]`,
data = data,
color = fragadd,
geom = c("point"),
main = paste(
unique(data$species),
unique(data$polarity),
unique(data$group),
sep = " "
)
) + ggplot2::geom_smooth(
method = "loess",
colour = "blue",
se = TRUE,
level = 0.95
) + ggplot2::scale_x_continuous(breaks = seq(from=-10, to=plyr::round_any(max(data$precursorCollisionEnergy), 10, f = ceiling)+10, by=10)) +
ggplot2::ylab("Mass Error [ppm]") +
ggplot2::xlab(flipr::collisionEnergyLabel(data)) +
ggplot2::labs(colour = 'Fragment') +
ggplot2::facet_wrap(fragadd ~ data$`foundMassRange[ppm]`, ncol = 6, labeller = ggplot2::label_wrap_gen(multi_line=FALSE)) +
ggplot2::theme_bw(base_size = 12, base_family = 'Helvetica') +
color_scale
ggplot2::ggsave(
precCeVsMerrPpmmPlot,
filename = paste0(basename, "-precCE-vs-merr-ppm.", plotFormat),
width = plotDimensions$width,
height = plotDimensions$height
)
return(precCeVsMerrPpmmPlot)
}
#' Plots the mass density distribution.
#' @param data the FIP data to plot.
#' @param basename the basename (identifying a case) for the plot.
#' @param plotFormat the format, passed to \code{ggplot2::ggsave}.
#' @param plotDimensions the dimensions of the plot.
#' @param color_scale the shared color scale to identify fragment and adduct pairs.
#' @return the ggplot object.
#' @export
plotMassDensityDistribution <- function(data, basename, plotFormat="png", plotDimensions=list(width=11.69, height=8.27), color_scale = ggplot2::scale_colour_hue()) {
message("m/z density distribution")
stopifnot(!missing(data))
stopifnot(!missing(basename))
nppms <- length(unique(data$`foundMassRange[ppm]`))
#plot m/z density distributions
mddPlot <-
ggplot2::ggplot(ggplot2::aes(
x = foundMass,
color = fragadd,
fill = fragadd
), data = data) +
ggplot2::ggtitle(paste(
unique(data$species),
unique(data$polarity),
unique(data$group),
sep = " "
)) + ggplot2::geom_density(ggplot2::aes(y = ..count.. / sum(..count..)), data = data) +
ggplot2::geom_vline(ggplot2::aes(xintercept = calculatedMass),
data = data,
linetype = 3) +
ggplot2::geom_text(
x = data$calculatedMass,
y = 0,
label = round(data$calculatedMass, digits = 4),
check_overlap = TRUE,
colour = "blue",
hjust = "left",
vjust = "top",
size = 3
) +
ggplot2::geom_vline(
ggplot2::aes(xintercept = foundMassLowerBound),
colour = "darkblue",
data = data,
linetype = 2
) +
ggplot2::geom_vline(
ggplot2::aes(xintercept = foundMassUpperBound),
colour = "darkblue",
data = data,
linetype = 2
) +
ggplot2::facet_wrap(~ `foundMassRange[ppm]`, nrow = nppms, labeller = ggplot2::label_wrap_gen(multi_line=FALSE)) +
ggplot2::theme_bw(base_size = 12, base_family = 'Helvetica') +
ggplot2::xlab("Fragment m/z") +
ggplot2::ylab("Normalized Count") +
ggplot2::labs(colour = 'Fragment', fill = 'Fragment') +
color_scale
ggplot2::ggsave(
mddPlot,
filename = paste0(basename, "-mass-dens-distr.", plotFormat),
width = plotDimensions$width,
height = plotDimensions$height
)
return(mddPlot)
}
#' Plots m/z vs. the mass error in ppm.
#' @param data the FIP data to plot.
#' @param basename the basename (identifying a case) for the plot.
#' @param plotFormat the format, passed to \code{ggplot2::ggsave}.
#' @param plotDimensions the dimensions of the plot.
#' @param color_scale the shared color scale to identify fragment and adduct pairs.
#' @return the ggplot object.
#' @export
plotMzVsMerrPpm <- function(data, basename, plotFormat="png", plotDimensions=list(width=11.69, height=8.27), color_scale = ggplot2::scale_colour_hue()) {
# plot m/z vs mass error
message("m/z-vs-mass-error-ppm")
mzVsMerrPpmPlot <- ggplot2::qplot(
x = foundMass,
y = `foundMassError[ppm]`,
data = data,
color = fragadd,
geom = c("violin"),
main = paste(
unique(data$species),
unique(data$polarity),
unique(data$group),
sep = " "
)
) + ggplot2::ylab("Mass Error [ppm]") +
ggplot2::xlab("Fragment m/z") +
ggplot2::labs(colour = 'Fragment') +
ggplot2::facet_wrap(~ data$`foundMassRange[ppm]`, ncol = 6, labeller = ggplot2::label_wrap_gen(multi_line=FALSE)) +
ggplot2::theme_bw(base_size = 12, base_family = 'Helvetica') +
ggplot2::geom_jitter(
ggplot2::aes(x = foundMass, y = `foundMassError[ppm]`, color = fragadd),
data = data,
alpha = 0.1
) + color_scale
ggplot2::ggsave(
mzVsMerrPpmPlot,
filename = paste0(basename, "-mz-vs-merr-ppm.", plotFormat),
width = plotDimensions$width,
height = plotDimensions$height
)
return(plotMzVsMerrPpm)
}
#' Plots the scan relative intensity histogram.
#' @param data the FIP data to plot.
#' @param basename the basename (identifying a case) for the plot.
#' @param plotFormat the format, passed to \code{ggplot2::ggsave}.
#' @param plotDimensions the dimensions of the plot.
#' @param color_scale the shared color scale to identify fragment and adduct pairs.
#' @return the ggplot object.
#' @export
plotScanRelativeIntensityHistogram <- function(data, basename, plotFormat="png", plotDimensions=list(width=11.69, height=8.27), color_scale = ggplot2::scale_colour_hue()) {
message(
"foundIntensity-scan-relative-normalized-histogram"
)
plot <-
ggplot2::ggplot(ggplot2::aes(
x = scanRelativeIntensity,
color = fragadd,
fill = fragadd
), data = data) +
ggplot2::ggtitle(paste(
unique(data$species),
unique(data$polarity),
unique(data$group),
sep = " "
)) +
ggplot2::geom_histogram(ggplot2::aes(y =..ndensity..), alpha=0.1, binwidth = 0.01, show.legend = FALSE) +
ggplot2::geom_density(ggplot2::aes(y =..scaled..), alpha=0.05, color="darkgray", fill="darkgray", show.legend = FALSE) +
ggplot2::geom_rug(ggplot2::aes(x = scanRelativeIntensity, y = 0, color=fragadd), position = ggplot2::position_jitter(height = 0)) +
#ggplot2::scale_x_continuous(breaks = seq(from=-10, to=plyr::round_any(max(data$precursorCollisionEnergy), 10, f = ceiling)+10, by=10)) +
ggplot2::xlab("Scan Relative Intensity") +
ggplot2::ylab("Scaled Density") +
ggplot2::labs(color = 'Fragment', fill = 'Fragment') +
color_scale +
ggplot2::xlim(0,1) +
ggplot2::facet_wrap(fragadd ~ data$`foundMassRange[ppm]`, ncol = 2, labeller = ggplot2::label_wrap_gen(multi_line=FALSE)) +
ggplot2::theme_bw(base_size = 12, base_family = 'Helvetica')
ggplot2::ggsave(
plot,
filename = paste0(basename, "-I-srn-histo.", plotFormat),
width = plotDimensions$width,
height = plotDimensions$height
)
return(plot)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.