Description Usage Arguments Details Value Examples
View source: R/MGLEV-bivariate.r
the Pickands dependence function A in survival MGL-EV copula
1 | Afunction(w, param)
|
w |
w \in [0,1]. |
param |
copula parameter in survival MGL-EV copula. |
In the bivariate case d=2 the stable tail dependence function \ell can be represented in terms of the Pickands dependence function A:
\begin{align} A_{δ}≤ft(w\right)=w I_{{\frac{1}{2}, \frac{1}{δ}+\frac{1}{2}}}≤ft[\frac{≤ft(1-w \right)^{-δ}}{≤ft(1-w \right)^{-δ} + w^{-δ} }\right] + ≤ft(1-w\right) I_{{\frac{1}{2}, \frac{1}{δ}+\frac{1}{2}}}≤ft[\frac{w^{-δ}}{≤ft(1-w \right)^{-δ} + w^{-δ} }\right]. \end{align}
where A_{δ} is the Pickands dependence function of survival MGL-EV copula.
Here I_{m,n}^{-1}() denotes the inverse of the beta cumulative distribution function I_{m,n}() (or regularized incomplete beta function)
with parameters shape1 = m and shape2 = n
implemented by R's qbeta
and pbeta
respectively.
The extreme value copula \bar{C}^{MGL-EV} of the survival MGL copula is given by
\bar{C}^{MGL-EV}(u_1,u_2;δ)=\exp≤ft[\log≤ft(u_1u_2\right)A_{δ}≤ft(\frac{\log≤ft(u_2\right)}{\log≤ft(u_1u_2\right)}\right)\right].
the value of the Pickands dependence function in [0.5,1]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | Afunction(w = 0.7, param = 1.2)
delta <- 0.7
w.vector <- seq(0.0001, 0.9999, length.out = 100)
y.vector <- Afunction(w = w.vector, param = delta)
plot(w.vector, y.vector, lwd = 2, col = 3, ylim = c(0.5, 1))
delta <- 1
w.vector <- seq(0.0001, 0.9999, length.out = 100)
y.vector <- Afunction(w = w.vector, param = delta)
lines(w.vector, y.vector, lwd = 2, col = 4)
delta <- 3
w.vector <- seq(0.0001, 0.9999, length.out = 100)
y.vector <- Afunction(w = w.vector, param = delta)
lines(w.vector, y.vector, lwd = 2, col = 5)
delta <- 5
w.vector <- seq(0.0001, 0.9999, length.out = 100)
y.vector <- Afunction(w = w.vector, param = delta)
lines(w.vector, y.vector, lwd = 2, col = 1)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.