Description Usage Arguments Details Value References Examples
Conditional Distribution Function of a Bivariate MGL and survival Copula
1 2 3 | hcMGL.bivar(u1, u2, pars)
hcMGL180.bivar(u1, u2, pars)
|
u1 |
numeric vectors of equal length with values in [0,1]. |
u2 |
numeric vectors of equal length with values in [0,1]. |
pars |
numeric; single number or vector of size length(u1); copula parameter > 0. |
The h-function is defined as the conditional distribution function of a bivariate copula, i.e.,
h_1(u_2|u_1,δ) := P(U_2 ≤q u_2 | U_1 = u_1) = \partial C(u_1,u_2) / \partial u_1,
h_2(u_1|u_2,δ) := P(U_1 ≤q u_1 | U_2 = u_2) := \partial C(u_1,u_2) / \partial u_2,
where (U_1, U_2) \sim C, and C is a bivariate copula distribution function with parameter(s) δ. For more details see Aas et al. (2009).
hcMGL.bivar/hcMGL180.bivar returns a list with
hfunc1: \partial C(u_1,u_2) / \partial u_1,
hfunc2: \partial C(u_1,u_2) / \partial u_2,
Zhengxiao Li, Jan Beirlant, Liang Yang. A new class of copula regression models for modelling multivariate heavy-tailed data. 2021, arXiv:2108.05511.
1 2 | hcMGL.bivar(u1 = c(0.1, 0.001, 0.3), u2 = c(0, 0.9999, 0.88), pars = 2)
hcMGL180.bivar(u1 = c(0.1, 0.001, 0.3), u2 = c(0, 0.9999, 0.88), pars = 2)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.