MGL.mle: Fitting bivariate MGL copula models for two continuous data

Description Usage Arguments Details Value References Examples

View source: R/MGL-mle.r

Description

MGL.mle is used to fit bivariate copula regression models via maximum likelihood (ML) method for two continuous variables.

Usage

1
2
3
4
5
6
7
MGL.mle(
  U,
  copula = c("MGL", "MGL180", "MGL-EV", "MGL-EV180", "Gumbel", "Normal", "MGB2", "t"),
  hessian = TRUE,
  initpar,
  ...
)

Arguments

U

two-dimensional matrix with values in [0,1].

copula

copula 'MGL', 'MGL180', "MGL-EV", "MGL-EV180", "MGB2", "Normal" , "t".

hessian

Logical. Should a numerically differentiated Hessian matrix be returned?

initpar

Initial values for the parameters to be optimized over.

...

additional arguments, see nlm for more details.

Details

The estimation method is performed via nlm function.

copula:

Value

A list containing the following components:

References

Zhang, F. Z. . "A generalized beta copula with applications in modeling multivariate long-tailed data." Insurance: Mathematics and Economics (2011).

Examples

1
2
3
4
5
6
7
  library(rMGLReg)
  Usim <- rcMGL.bivar(n = 500, pars = 0.5)
  m.MGL <- MGL.mle(Usim,
  copula  = "MGL",
  initpar = c(2))
  # estimation results
  m.MGL

lizhengxiao/rMGLReg documentation built on Jan. 2, 2022, 8:52 a.m.