Description Usage Arguments Details Value References Examples
Density (dGLMGA
), distribution function (pGLMGA
), quantile function (qGLMGA
) and random generation (rGLMGA
) for the GLMGA distribution with parameters sigma, a and b.
1 2 3 4 5 6 7 |
y |
vector of quantiles. |
sigma |
parameter of GLMGA distribution. |
a |
parameter of GLMGA distribution. |
b |
parameter of GLMGA distribution. |
log |
logical; if TRUE, probabilities/densities p are returned as log(p). |
u |
vector of probabilities. |
n |
number of observations. If length(n) > 1, the length is taken to be the number required. |
The GLMGA distribution with parameters (sigma, a, b) has density
f(y)=\frac{(2b)^a}{σ B(a,\frac{1}{2})}\frac{y^{-(\frac{1}{2σ}+1)}}{(y^{-\frac{1}{σ}}+2b)^{a + \frac{1}{2}}},
for y>0,σ>0, a>0, b>0.
The cumulative distribution function F(y) is
F(y)=1-I_{\frac{1}{2},a}(\frac{y^{-1/σ}}{y^{-1/σ}+2b}).
Here I_{m,n}() is the beta cumulative distribution function (or regularized incomplete beta function) with parameters shape1 = m and shape2 = n
implemented by R's pbeta
and defined in its help.
The quantile function F^{-1}(u) is
(2b)^{-σ}[\frac{I^{-1}_{\frac{1}{2},a}(1-p)}{1-I^{-1}_{\frac{1}{2},a}(1-p)}]^{-σ},
where u \in (0,1), and I_{m,n}^{-1}() denotes the inverse of the beta cumulative distribution function (or regularized incomplete beta function)
with parameters shape1 = m and shape2 = n
implemented by R's qbeta
.
dGLMGA
gives the density, pGLMGA
gives the distribution function, qGLMGA
gives the quantile function, and rGLMGA
generates random deviates.
Invalid arguments will result in return value NaN, with a warning.
The length of the result is determined by n for rgamma, and is the maximum of the lengths of the numerical arguments for the other functions.
The numerical arguments other than n are recycled to the length of the result. Only the first elements of the logical arguments are used.
Zhengxiao Li, Jan Beirlant, Shengwang Meng. Generalizing The Log-Moyal Distribution And Regression Models For Heavy-Tailed Loss Data. ASTIN Bulletin: The Journal of the IAA, 11(1):57-99, 2021.
1 2 3 4 5 6 7 8 | # density function at value 0.5 and 0.1
dGLMGA(c(0.5, 0.1), sigma = 2, a = 2, b = 3, log = FALSE)
# cdf at value 10 and 20.
pGLMGA(c(10, 20), sigma = 2, a = 2, b = 3)
# quantile function at level 50% and 10%
qGLMGA(c(0.5, 0.1), sigma = 2, a = 2, b = 3)
# simulate 10 samples from GLMGA distribution with parameters (2, 2, 3)
rGLMGA(n = 10, sigma = 2, a = 2, b = 3)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.