Description Usage Arguments Details Value References Examples
Density, distribution function, and h-function the bivariate MGL-EV and survival MGL-EV copula with copula parameter delta.
1 2 3 4 5 6 7 8 9 10 11 | pcMGLEV.bivar(u1, u2, param)
dcMGLEV.bivar(u1, u2, param)
pcMGLEV180.bivar(u1, u2, param)
dcMGLEV180.bivar(u1, u2, param)
hcMGLEV180.bivar(u1, u2, param)
hcMGLEV.bivar(u1, u2, param)
|
u1, u2 |
numeric vectors of equal length with values in [0,1]. |
param |
copula parameter, denoted by delta. |
The h-function is defined as the conditional distribution function of a bivariate copula, i.e.,
h_1(u_2|u_1,δ) := P(U_2 ≤q u_2 | U_1 = u_1) = \partial C(u_1,u_2) / \partial u_1,
h_2(u_1|u_2,δ) := P(U_1 ≤q u_1 | U_2 = u_2) := \partial C(u_1,u_2) / \partial u_2,
where (U_1, U_2) \sim C, and C is a bivariate copula distribution function with parameter(s) δ. For more details see Aas et al. (2009).
dcMGLEV.bivar
, pcMGLEV.bivar
and hMGLEV.bivar
give values of density distribution and h-function for the 2-dimensional MGL copula with copula parameter δ>0.
dcMGLEV180.bivar
, pcMGLEV180.bivar
and hMGLEV180.bivar
give values of density and distribution and h-function for the 2-dimensional MGL copula with copula parameter δ>0.
hMGLEV.bivar
and hMGLEV180.bivar
return a list with
** hfunc1: \partial C(u_1,u_2) / \partial u_1,
** hfunc2: \partial C(u_1,u_2) / \partial u_2,
#' Zhengxiao Li, Jan Beirlant, Liang Yang. A new class of copula regression models for modelling multivariate heavy-tailed data. 2021, arXiv:2108.05511.
1 2 3 4 5 6 | pcMGLEV.bivar(u1 = c(0.3, 0.9), u2 = c(0.5, 0.8), param = 2)
dcMGLEV.bivar(u1 = 0.001, u2 = 0.999, param = 1)
pcMGLEV180.bivar(u1 = c(0.3, 0.9), u2 = c(0.5, 0.8), param = 2)
dcMGLEV180.bivar(u1 = 0.5, u2 = 0.78, param = 1.8)
hcMGLEV180.bivar(u1 = 0.5, u2 = 0.78, param = 1.8)
hcMGLEV.bivar(u1 = 0.5, u2 = 0.78, param = 1.8)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.