R/memtrend.R

Defines functions memtrend

Documented in memtrend

#' @title Methods for influenza trend calculation
#'
#' @description
#' Function \code{memtrend} is used to calculate the two parameters for defining the
#' current influenza trend.\cr
#'
#' @name memtrend
#'
#' @param i.flu An object of class \code{mem}.
#' @param i.type Type of confidence interval to calculate the trend thresholds.
#' @param i.level Level of confidence interval to calculate the trend thresholds.
#' @param i.type.boot Type of bootstrap technique.
#' @param i.iter.boot Number of bootstrap iterations.
#'
#' @return
#' \code{memtrend} returns a list with two objects, the first one is the parameter used in
#' the calculations (\code{param.seasons}) and the second one (\code{trend.thresholds}) is
#' a matrix 1x2 with the Ascending (Delta) and Descending parameters (Eta).
#' \enumerate{
#' \item Delta - Ascending parameter.
#' \item Eta - Descending parameter.
#' }
#'
#' @details
#' This method is based on the Moving Epidemics Method (MEM) used to monitor influenza
#' activity in a weekly surveillance system.
#'
#' Input data is a data frame containing rates that represent historical influenza surveillance
#' data. It can start and end at any given week (tipically at week 40th), and rates can be
#' expressed as per 100,000 inhabitants (or per consultations, if population is not
#' available) or any other scale.
#'
#' The \code{i.seasons} parameter indicates how many seasons are used for calculating
#' thresholds. A value of -1 indicates the program to use as many as possible. If there
#' are less than this parameter, the program used all seasons avalaible.
#'
#' There are three different states for trend, to determine the state, the current rate
#' and the difference of the current and last weekly rate are needed:
#'
#' \itemize{
#' \item{2} {Ascending - When the weekly rate is above the epidemic threshold and
#' the difference of the current and last weekly rate is higher than Delta OR this is the
#' first time the rate is above the epidemic threshold.}
#' \item{3} {Descending - When the weekly rate is above the epidemic threshold
#' and the difference of the current and last weekly rate is lower than Eta OR this is the
#' first time the rate is below the epidemic threshold after having been above it.}
#' \item{1} {Stable - Otherwise.}
#' }
#'
#' @examples
#' # Castilla y Leon Influenza Rates data
#' data(flucyl)
#' # mem model
#' flucyl.mem <- memmodel(flucyl)
#' # Calculates trend thresholds
#' trend <- memtrend(flucyl.mem)
#' trend
#' @author Jose E. Lozano \email{lozalojo@@gmail.com}
#'
#' @references
#' Vega T, Lozano JE, Ortiz de Lejarazu R, Gutierrez Perez M. Modelling influenza epidemic - can we
#' detect the beginning and predict the intensity and duration? Int Congr Ser. 2004 Jun;1263:281-3.
#'
#' Vega T, Lozano JE, Meerhoff T, Snacken R, Mott J, Ortiz de Lejarazu R, et al. Influenza surveillance
#' in Europe: establishing epidemic thresholds by the moving epidemic method. Influenza Other Respir
#' Viruses. 2013 Jul;7(4):546-58. DOI:10.1111/j.1750-2659.2012.00422.x.
#'
#' Vega T, Lozano JE, Meerhoff T, Snacken R, Beaute J, Jorgensen P, et al. Influenza surveillance in
#' Europe: comparing intensity levels calculated using the moving epidemic method. Influenza Other
#' Respir Viruses. 2015 Sep;9(5):234-46. DOI:10.1111/irv.12330.
#'
#' Lozano JE. lozalojo/mem: Second release of the MEM R library. Zenodo [Internet]. [cited 2017 Feb 1];
#' Available from: \url{https://zenodo.org/record/165983}. DOI:10.5281/zenodo.165983
#'
#' @keywords influenza
#'
#' @export
memtrend <- function(i.flu,
                     i.type = 1,
                     i.level = 0.95,
                     i.type.boot = "norm",
                     i.iter.boot = 10000) {
  anios <- dim(i.flu$data)[2]
  semanas <- dim(i.flu$data)[1]
  datos.dif <- apply(i.flu$data, 2, diff)
  datos.dif <- rbind(NA, datos.dif)
  rownames(datos.dif)[1] <- rownames(i.flu$data)[1]
  for (j in 1:anios) datos.dif[-(i.flu$seasons.data[1, j, 1]:min(semanas, 1 + i.flu$seasons.data[2, j, 1])), j] <- NA
  datos.menos <- datos.dif
  datos.mas <- datos.dif
  datos.menos[datos.dif < 0] <- NA
  datos.mas[datos.dif > 0] <- NA
  limite.s <- iconfianza(datos = as.numeric(datos.menos), nivel = i.level, tipo = i.type, ic = T, tipo.boot = i.type.boot, iteraciones.boot = i.iter.boot, colas = 1)[1]
  limite.i <- iconfianza(datos = as.numeric(datos.mas), nivel = i.level, tipo = i.type, ic = T, tipo.boot = i.type.boot, iteraciones.boot = i.iter.boot, colas = 1)[3]
  trend.thresholds <- matrix(c(limite.s, limite.i), ncol = 2)
  colnames(trend.thresholds) <- c("Ascending Threshold", "Descending Threshold")
  rownames(trend.thresholds) <- "Trend Thresholds"
  memtrend.output <- list(
    trend.thresholds = trend.thresholds,
    param.flu = i.flu,
    param.type = i.type,
    param.level = i.level,
    param.type.boot = i.type.boot,
    param.iter.boot = i.iter.boot
  )
  memtrend.output$call <- match.call()
  return(memtrend.output)
}
lozalojo/mem documentation built on April 1, 2021, 1:37 a.m.