#' ellipsoid_selection: Performs variable selection for ellipsoid models
#'
#' @description Performs variable selection for ellipsoid models according to omission rates in the environmental space.
#' @param env_train A data frame with the environmental training data.
#' @param env_test A data frame with the environmental testing data. The default is NULL if given the selection process will show the p-value of a binomial test.
#' @param env_vars A vector with the names of environmental variables to be used in the selection process.
#' @param nvarstest A vector indicating the number of variables to fit the ellipsoids during model selection. It is allowed to test models with a different number of variables (i.e. nvarstest=c(3,6)).
#' @param level Proportion of points to be included in the ellipsoids. This parameter is equivalent to the error (E) proposed by Peterson et al. (2008).
#' @param mve A logical value. If TRUE a minimum volume ellipsoid will be computed using
#' the function \code{\link[MASS]{cov.rob}} of the \pkg{MASS} package. If False the covariance matrix of the input data will be used.
#' @param omr_criteria Omission rate criteria. Value of the omission rate allowed for the selection process. Default NULL see details.
#' @param env_bg Environmental data to compute the approximated prevalence of the model. The data should be a sample of the environmental layers of the calibration area.
#' @param parallel The computations will be run in parallel. Default FALSE
#' @param ncores The number of cores that will be used for the parallel process. By default ntbox will use the total number of available cores less one.
#' @param proc Logical if TRUE a partial roc test will be run.
#' @param proc_iter Numeric. The total number of iterations for the partial ROC bootstrap.
#' @param sub_sample Logical. Indicates whether the pROC test should run using a subsample of size sub_sample_size. It is recommended for big rasters
#' @param sub_sample_size Numeric. Size of the sample to be used for computing pROC values.
#' @param rseed Logical. Whether or not to set a random seed for partial roc bootstrap. Default TRUE.
#' @param comp_each Number of models to run in each job in the parallel computation. Default 100
#' @return A data.frame with 5 columns: i) "fitted_vars" the names of variables that were fitted; ii) "om_rate" omission rates of the model; iii) "bg_prevalence" approximated prevalence of the model see details section; iv) The rank value of importance in model selection by omission rate; v) The rank value by prevalence after if the value of omr_criteria is passed.
#' @details Model selection occurs in environmental space (E-space). For each variable combination the omission rate (omr) in E-space is computed using the function \code{\link[ntbox]{inEllipsoid}}. The results will be ordered by omr and if the user-specified the environmental background "env_bg" an estimated prevalence will be computed and the results will be ordered also by "bg_prevalence".
#'
#' The number of variables to construct candidate models can be specified by the user in the parameter "nvarstest". Model selection will be run in parallel if the user-specified more than one set of combinations and the total number of models to be tested is greater than 500.
#' If given"omr_criteria" and "bg_prevalence", the results will be shown pondering those models that met the "omr_criteria" by the value of "bg_prevalence".
#' For more details and examples go to \code{\link[ntbox]{ellipsoid_omr}} help.
#' @export
#' @import future
#' @author Luis Osorio-Olvera <luismurao@gmail.com>
#' @references Peterson, A.T. et al. (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Modell., 213, 63–72.
#' @examples
#' \dontrun{
#' # Bioclimatic layers path
#' wcpath <- list.files(system.file("extdata/bios",
#' package = "ntbox"),
#' pattern = ".tif$",full.names = TRUE)
#' # Bioclimatic layers
#' wc <- raster::stack(wcpath)
#' # Occurrence data for the giant hummingbird (Patagona gigas)
#' pg <- utils::read.csv(system.file("extdata/p_gigas.csv",
#' package = "ntbox"))
#' # Split occs in train and test
#' pgL <- base::split(pg,pg$type)
#' pg_train <- pgL$train
#' pg_test <- pgL$test
#' # Environmental data for training and testing
#' pg_etrain <- raster::extract(wc,pg_train[,c("longitude",
#' "latitude")],
#' df=TRUE)
#' pg_etrain <- pg_etrain[,-1]
#' pg_etest <- raster::extract(wc,pg_test[,c("longitude",
#' "latitude")],
#' df=TRUE)
#' pg_etest <- pg_etest[,-1]
#'
#' # Non-correlated variables
#' env_varsL <- ntbox::correlation_finder(cor(pg_etrain),
#' threshold = 0.8,
#' verbose = F)
#' env_vars <- env_varsL$descriptors
#' # Number of variables to fit ellipsoids (3,5,6 )
#' nvarstest <- c(3,5,6)
#' # Level
#' level <- 0.95
#' # Environmental background to compute the appoximated
#' # prevalence in the prediction
#' env_bg <- raster::sampleRandom(wc,10000)
#'
#' # Selection process
#'
#' e_selct <- ntbox::ellipsoid_selection(env_train = pg_etrain,
#' env_test = pg_etest,
#' env_vars = env_vars,
#' level = level,
#' nvarstest = nvarstest,
#' env_bg = env_bg,
#' omr_criteria=0.07)
#'
#'# Best ellipsoid model for "omr_criteria" and prevalence
#' bestvarcomb <- stringr::str_split(e_selct$fitted_vars,",")[[1]]
#'
#' # Ellipsoid model projection
#'
#' best_mod <- ntbox::cov_center(pg_etrain[,bestvarcomb],
#' mve = T,
#' level = 0.99,
#' vars = 1:length(bestvarcomb))
#'
#'
#' # Projection model in geographic space
#'
#' mProj <- ntbox::ellipsoidfit(wc[[bestvarcomb]],
#' centroid = best_mod$centroid,
#' covar = best_mod$covariance,
#' level = 0.99,size = 3)
#'
#' raster::plot(mProj$suitRaster)
#' points(pg[,c("longitude","latitude")],pch=20,cex=0.5)
#'
# Evaluating the model with partial roc of independent data
#' pg_proc <- ntbox::pROC(continuous_mod = mProj$suitRaster,
#' test_data = pg_test[,c("longitude","latitude")],
#' n_iter = 1000,
#' E_percent = 5,
#' boost_percent = 50,parallel = F)
#' print(pg_proc$pROC_summary)
#' }
ellipsoid_selection <- function(env_train,env_test=NULL,env_vars,nvarstest,level=0.95,
mve=TRUE,env_bg=NULL,omr_criteria,parallel=F,ncores=NULL,
comp_each=100,proc=FALSE,
sub_sample=FALSE,
sub_sample_size=10000,
proc_iter=100,rseed=TRUE){
n_vars <- length(env_vars)
ntest <- sapply(nvarstest, function(x) choose(n_vars,x))
nmodels <- sum(ntest)
cat("-----------------------------------------------------------------------------------------\n")
cat("\t\t**** Starting model selection process ****\n")
cat("-----------------------------------------------------------------------------------------\n\n")
for(i in 1:length(ntest)){
cat("A total number of",ntest[i] ,"models will be created for combinations",
"of",n_vars, "variables taken by",nvarstest[i],"\n\n")
}
cat("-----------------------------------------------------------------------------------------\n")
cat("\t **A total number of",nmodels ,"models will be tested **\n\n")
cat("-----------------------------------------------------------------------------------------\n")
n_cores <- future::availableCores() -1
if(ncores>n_cores || is.null(ncores)){
n_cores <- n_cores
} else{
n_cores <- ncores
}
if(parallel){
plan(multisession,workers=n_cores)
options(future.globals.maxSize= 8500*1024^2,future.rng.onMisuse="ignore")
} else{
plan(sequential)
}
max_var <- max(nvarstest)
cvars <- lapply(nvarstest, function(x) {
cb <- utils::combn(env_vars,x)
if(x < max_var){
nrowNA <-max_var-nrow(cb)
na_mat <- matrix(nrow = nrowNA,ncol=ncol(cb))
cb <- rbind(cb,na_mat)
}
return(cb)
})
big_vars <- do.call(cbind,cvars)
globs <- c("env_train",
"env_test",
"env_bg",
#"kkk",
"big_vars",
"level",
"mve")
df_omr <- seq_len(ncol(big_vars)) %>% furrr::future_map_dfr(function(x){
var_comb <- stats::na.omit(big_vars[,x])
env_data0 <- stats::na.omit(env_train[,var_comb])
env_test0 <- stats::na.omit(env_test[,var_comb])
env_bg0 <- stats::na.omit(env_bg[,var_comb])
if(length(var_comb)==1){
env_data0 <- data.frame(env_data0)
env_test0 <- data.frame(env_test0)
env_bg0 <- data.frame(env_bg0)
names(env_data0) <- names(env_test0) <- names(env_bg0) <- var_comb
}
mod <- try(ntbox::cov_center(env_data0,level = level,
vars = var_comb,mve = mve),
silent=TRUE)
if(methods::is(mod,"try-error")) return()
train_inE <- ntbox::inEllipsoid(mod$centroid,
env_data = env_data0,
eShape = mod$covariance,
level = level)
test_inE <- ntbox::inEllipsoid(mod$centroid,
env_data = env_test0,
eShape = mod$covariance,
level = level)
train_omr <- 1 - sum(train_inE$in_Ellipsoid)/
length(train_inE$in_Ellipsoid)
test_omr <- 1 - sum(test_inE$in_Ellipsoid)/
length(test_inE$in_Ellipsoid)
variables <- paste0(var_comb,collapse = ",")
non_pred_train_ids <- paste0(which(train_inE$in_Ellipsoid %in% 0),
collapse = ",")
non_pred_test_ids <- paste0(which(test_inE$in_Ellipsoid %in% 0),
collapse = ",")
romr <- data.frame(fitted_vars=variables,
nvars=length(var_comb),
om_rate_train = train_omr,
non_pred_train_ids,
om_rate_test = test_omr,
non_pred_test_ids,
bg_prevalence = NA,
pval_bin = NA,
pval_proc = NA,
env_bg_paucratio = NA,
env_bg_auc=NA,
mean_omr_train_test = mean(c(train_omr,test_omr)),
rank_by_omr_train_test =NA,
rank_omr_aucratio = NA)
return(romr)
},.options = furrr::furrr_options(seed = NULL,
globals = globs),.progress = TRUE)
om_rate_test <- om_rate_train <- NULL
#rfinal <- data.frame(rfinal,big_var_ID=1:nrow(rfinal))
df_omr <- df_omr %>% dplyr::arrange(om_rate_test,om_rate_train)
df_omr[["rank_by_omr_train_test"]] <- seq_len(nrow(df_omr))
met_criteriaID_train <- which(df_omr$om_rate_train <= (omr_criteria+1-level))
met_criteriaID_test <- which(df_omr$om_rate_test <= omr_criteria)
met_criteriaID_both <- intersect(met_criteriaID_train,
met_criteriaID_test)
if(length(met_criteriaID_train) > 0L){
cat("\n\t",length(met_criteriaID_train),
"models passed omr_criteria for train data\n")
}
if(length(met_criteriaID_test) > 0L){
cat("\t",length(met_criteriaID_test),
"models passed omr_criteria for test data\n")
}
if(length(met_criteriaID_both) > 0L){
cat("\t",length(met_criteriaID_both),
"models passed omr_criteria for train and test data\n")
}
rfilter <- df_omr %>% dplyr::filter(om_rate_train <=omr_criteria+(1-level) &
om_rate_test <= omr_criteria)
pass_omr <- FALSE
if(nrow(rfilter)>0L){
#rfinal <- rfilter
pass_omr <- TRUE
} else{
rfinal <- df_omr
cat("\tNo model passed the omission criteria ranking by mean omission rates\n")
return(rfinal)
}
if(pass_omr){
cat("\n\n **Estimating environmental prevalence for models passing omission rate criteria**\n\n")
globs <- c(globs,"rfilter","proc","sub_sample",
"sub_sample_size","proc_iter","rseed")
rfinal <- seq_len(nrow(rfilter)) %>% furrr::future_map_dfr(function(x){
var_comb <- stringr::str_split(rfilter$fitted_vars[x],",")[[1]]
env_data0 <- stats::na.omit(env_train[,var_comb])
env_test0 <- stats::na.omit(env_test[,var_comb])
env_bg0 <- stats::na.omit(env_bg[,var_comb])
if(length(var_comb)==1){
env_data0 <- data.frame(env_data0)
env_test0 <- data.frame(env_test0)
env_bg0 <- data.frame(env_bg0)
names(env_data0) <- names(env_test0) <- names(env_bg0) <- var_comb
}
r2 <- try(
r1 <- ntbox::ellipsoid_omr(env_data = env_data0,
env_test = env_test0,
env_bg = env_bg0,
cf_level = level,
proc = proc,
mve = mve,
sub_sample = sub_sample,
sub_sample_size = sub_sample_size,
proc_iter = proc_iter,
rseed = rseed)
,silent = TRUE)
if(is.data.frame(r2)) return(r1)
},.options = furrr::furrr_options(seed = NULL,
globals = globs),
.progress = TRUE)
rownames(rfinal) <- NULL
mean_omr <- rowMeans(rfinal[,c("om_rate_train",
"om_rate_test")])
rfinal$mean_omr_train_test <- mean_omr
rfinal <- rfinal[order(rfinal$mean_omr_train_test,
rfinal$bg_prevalence,
decreasing = F),]
rfinal$rank_by_omr_train_test <- order(rfinal$mean_omr_train_test)
rfinal$rank_omr_aucratio <- NA
if(proc){
rfinal$rank_omr_aucratio <- order(rfinal$env_bg_paucratio,decreasing = TRUE)
rfinal <- rfinal[rfinal$rank_omr_aucratio,]
}
ids_not_passing <- which(!df_omr$fitted_vars %in% rfinal$fitted_vars)
rfinal <- rbind.data.frame(rfinal,df_omr[ids_not_passing,])
}
future::plan(sequential)
rownames(rfinal) <- NULL
gc()
return(rfinal)
}
#' ellipsoid_omr
#'
#' @description Compute the omission rate of ellipspoid models
#' @param env_data A data frame with the environmental data.
#' @param env_test A data frame with the environmental testing data. The default is NULL if given the selection process will show the p-value of a binomial test.
#' @param env_bg Environmental data to compute the approximated prevalence of the model. The data should be a sample of the environmental layers of the calibration area.
#' @param cf_level Proportion of points to be included in the ellipsoids. This parameter is equivalent to the error (E) proposed by Peterson et al. (2008).
#' @param mve A logical value. If TRUE a minimum volume ellipsoid will be computed using
#' the function \code{\link[MASS]{cov.rob}} of the \pkg{MASS} package. If False the covariance matrix of the input data will be used.
#' @param proc Logical if TRUE a partial roc test will be run.
#' @param proc_iter Numeric. The total number of iterations for the partial ROC bootstrap.
#' @param sub_sample Logical. Indicates whether the pROC test should run using a subsample of size sub_sample_size. It is recommended for big rasters
#' @param sub_sample_size Numeric. Size of the sample to be used for computing pROC values.
#' @param rseed Logical. Whether or not to set a random seed for partial roc bootstrap. Default TRUE.
#' @return A data.frame with 5 columns: i) "fitted_vars" the names of variables that were fitted; ii) "om_rate" omission rates of the model; iii) "bg_prevalence" approximated prevalence of the model see details section.
#' @export
#' @examples
#' \dontrun{
#' # Bioclimatic layers path
#' wcpath <- list.files(system.file("extdata/bios",
#' package = "ntbox"),
#' pattern = ".tif$",full.names = TRUE)
#' # Bioclimatic layers
#' wc <- raster::stack(wcpath)
#' # Occurrence data for the giant hummingbird (Patagona gigas)
#' pg <- utils::read.csv(system.file("extdata/p_gigas.csv",
#' package = "ntbox"))
#' # Split occs in train and test
#' pgL <- base::split(pg,pg$type)
#' pg_train <- pgL$train
#' pg_test <- pgL$test
#' # Environmental data for training and testing
#' pg_etrain <- raster::extract(wc,pg_train[,c("longitude",
#' "latitude")],
#' df=TRUE)
#' pg_etrain <- pg_etrain[,-1]
#' pg_etest <- raster::extract(wc,pg_test[,c("longitude",
#' "latitude")],
#' df=TRUE)
#' pg_etest <- pg_etest[,-1]
#'
#' # Non-correlated variables
#' env_varsL <- ntbox::correlation_finder(cor(pg_etrain),
#' threshold = 0.8,
#' verbose = F)
#' env_vars <- env_varsL$descriptors
#' env_bg <- raster::sampleRandom(wc,10000)
#' vars_to_test <- c("bio01","bio07","bio12")
#' ellip_eval <- ntbox::ellipsoid_omr(env_data= pg_etrain[,vars_to_test],
#' env_test= pg_etest[,vars_to_test],
#' env_bg = env_bg[,vars_to_test],
#' cf_level = 0.97,
#' mve=TRUE,proc=TRUE,
#' proc_iter=100,rseed=TRUE)
#' print(ellip_eval)
#' }
ellipsoid_omr <- function(env_data,env_test=NULL,env_bg,cf_level,
mve=TRUE,proc=FALSE,proc_iter=100,
sub_sample = FALSE,
sub_sample_size = 10000,
rseed=TRUE){
emd <- try(ntbox::cov_center(data = env_data,
mve = mve,
level = cf_level,
vars = 1:ncol(env_data)),
silent = TRUE)
message1 <- attr(emd,"class")== "try-error"
if(length(message1)>0L)
return()
in_e <- inEllipsoid(centroid = emd$centroid,
eShape = emd$covariance,
env_data = env_data,
level = cf_level)
fails_train_ids <- which(in_e$in_Ellipsoid== 0)
if(length(fails_train_ids)>0){
fails_train_ids <- paste0(fails_train_ids,collapse = ",")
} else {
fails_train_ids <- NA
}
occs_table <- table( in_e$in_Ellipsoid)
succsID <- which(names(occs_table) %in% "1")
failsID <- which(names(occs_table) %in% "0")
occs_succs <- if(length(succsID)>0L){
occs_table[[succsID]]
} else{
0
}
occs_fail <- if(length(failsID)>0L){
occs_table[[failsID]]
} else{
0
}
a_train <- occs_fail
omrate_train <- a_train /nrow( in_e)
d_results <- data.frame(fitted_vars =paste(names(env_data),
collapse = ","),
nvars=length(emd$centroid),
om_rate_train= omrate_train,
non_pred_train_ids = fails_train_ids,
om_rate_test = NA,
non_pred_test_ids = NA,
bg_prevalence = NA,
pval_bin=NA,
pval_proc =NA,
env_bg_paucratio=NA,
env_bg_auc = NA)
if(is.data.frame(env_test) || is.matrix(env_test)){
in_etest <- ntbox::inEllipsoid(centroid = emd$centroid,
eShape = emd$covariance,
env_data = env_test,
level = cf_level)
fails_test_ids <- which(in_etest$in_Ellipsoid== 0)
if(length(fails_train_ids)>0){
fails_test_ids <- paste0(fails_test_ids,collapse = ",")
} else {
fails_test_ids <- NA
}
suits_val <- exp(-0.5*( in_etest$mh_dist))
occs_table_test <- table(in_etest$in_Ellipsoid)
succsID <- which(names(occs_table_test) %in% "1")
failsID <- which(names(occs_table_test) %in% "0")
occs_succs_test <- if(length(succsID)>0L){
occs_table_test[[succsID]]
} else{
0
}
occs_fail_test <- if(length(failsID)>0L){
occs_table_test[[failsID]]
} else{
0
}
a_test <- occs_fail_test
omrate_test <- a_test /nrow( in_etest)
d_results[["om_rate_test"]] <- omrate_test
d_results[["non_pred_test_ids"]] <- fails_test_ids
}
if(!is.null(env_bg)){
env_bg <- data.frame(env_bg)
in_ebg <- ntbox::inEllipsoid(centroid = emd$centroid,
eShape = emd$covariance,
env_data = env_bg,
level = cf_level)
suits_bg <- exp(-0.5*in_ebg$mh_dist)
bg_table <- table(c(in_ebg$in_Ellipsoid,in_e$in_Ellipsoid))
succs_bg_ID <- which(names(bg_table) %in% "1")
fails_bg_ID <- which(names(bg_table) %in% "0")
bg_succs <- if(length(succs_bg_ID)>0L){
bg_table[[succs_bg_ID]]
}
else{
0
}
bg_fails <- if(length(fails_bg_ID)>0L){
bg_table[[fails_bg_ID]]
}
else{
0
}
prevBG <- bg_succs/(bg_fails+bg_succs)
d_results[["bg_prevalence"]] <- prevBG
if(exists("in_etest")){
#bin_table <- table(c(in_ebg$in_Ellipsoid,
# in_etest$in_Ellipsoid))
#binBG <- bin_table[[2]]/(bin_table[[1]]+bin_table[[2]])
test_fail <- occs_fail_test
test_succs <- occs_succs_test
p_bin <- 1 - stats::pbinom(test_succs,
size=test_succs+test_fail,
prob = prevBG)
d_results[["pval_bin"]] <- p_bin
if(proc){
proc <- ntbox::pROC(suits_bg,test_data = suits_val,
n_iter = proc_iter,sub_sample = sub_sample,
sub_sample_size = sub_sample_size,
rseed = rseed)
pval_proc <- proc$pROC_summary[3]
mean_aucratio <- proc$pROC_summary[2]
mean_auc <- proc$pROC_summary[1]
d_results[["pval_proc"]] <- pval_proc
d_results[["env_bg_paucratio"]] <- mean_aucratio
d_results[["env_bg_auc"]] <- mean_auc
}
}
}
return(d_results)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.