#' Function fit an ellipsoid model
#' @description Function fit an ellipsoid model using the shape matrix (covariance matrix)
#' of the niche variables.
#' @param envlayers A RasterStack or RasterBrick object of the niche variables.
#' @param centroid A vector with the values of the centers of the ellipsoid (see \code{\link[ntbox]{cov_center}}).
#' @param covar The shape matrix (covariance) of the ellipoid (see \code{\link[ntbox]{cov_center}}).
#' @param level The proportion of points to be included inside the ellipsoid
#' @param plot Logical If True a plot of the niche will be shown.
#' @param size The size of the points of the niche plot.
#' @param xlab1 For x label for 2-dimensional histogram
#' @param ylab1 For y label for 2-dimensional histogram
#' @param zlab1 For z label for 2-dimensional histogram
#' @param ... Arguments passed to \code{\link[rgl]{plot3d}} function from rgl
#' @return Returns a list containing a data.frame with the suitability values; a suitability raster;
#' a data.frame with the mahalanobis and euclidean distances to the centroid.
#' @export
#' @examples
#' ## Load niche data
#' \dontrun{
#' d_cardon <- read.csv(system.file("extdata", "cardon_virtual.csv", package = "ntbox"))
#' ## Compute the centroid and shape (covariance matrix) of the ellipsoid model.
#' covar_centroid <- cov_center(d_cardon,mve=TRUE,level=0.99,vars=c(3,4,5))
#' ## RasterStack with the niche variables
#' nicheStack <- raster::stack(list.files(system.file("extdata",
#' package = "ntbox"),
#' pattern = ".asc$",
#' full.names = TRUE))
#' # Fitting the ellipsoid model
#' ellipsoidMod <- ellipsoidfit(nicheStack,
#' covar_centroid$centroid,
#' covar_centroid$covariance,
#' level=0.99,plot=TRUE,size=3)
#' plot(ellipsoidMod$suitRaster)
#' }
ellipsoidfit <- function(envlayers,centroid,covar,level=0.95,
plot=T,size,
xlab1="niche var 1",ylab1= "niche var 2",zlab1="S",...){
if(methods::is(envlayers, "RasterStack") ||
methods::is(envlayers, "RasterBrick")){
resolution <- raster::res(envlayers)
extention <- raster::extent(envlayers)
env_vars <- raster::getValues(envlayers)
coordinates <- sp::coordinates(envlayers)
suitRaster <- envlayers[[1]]
#toDF<- data.frame(raster::rasterToPoints(data))
#coordinates <- toDF[,c(1,2)]
#data <- toDF[,-c(1,2)]
}
else{
env_vars <- data.frame(envlayers)
}
# Calculating distance to the centroid
mahalanobisD <- stats::mahalanobis(env_vars,
center = centroid,
cov = covar)
ecucliedean <- sqrt(rowSums(centroid-env_vars)^2)
suit <- function( mahalanobisD){
a <- 1
expo <- exp(-0.5* mahalanobisD)
return(a*expo)
}
# Computing the suitabilities
suits <- suit( mahalanobisD)
#suits[suits<threshold] <- 0
if(dim(env_vars)[2]==2 && plot==TRUE){
x <- seq(from = centroid[1]/2,to =centroid[1]*2 ,length=100)
x <- sort(x)
y <- seq(from = centroid[2]/2,to =centroid[2]*2 ,length=100)
y <- sort(y)
#maha1 <- stats::mahalanobis(cbind(x,y),
# center = centroid,
# cov = covar)
suit1 <- function(x,y) {
maha1 <- stats::mahalanobis(cbind(x,y),
center = centroid,
cov = covar)
expo <- exp(-0.5* maha1)
return(expo)
}
#z <- x %o% y
z <- outer(x,y,FUN = suit1)
p1 <- graphics::persp(x,y,z, box=T,xlab=xlab1,
ylab=ylab1,zlab=zlab1, col="blue",
theta = 55, phi = 30,r = 40,
d = 0.1, expand = 0.5,
ticktype = "detailed", nticks=5,
cex.lab=1.5, cex.axis=1.3,
cex.main=1.5, cex.sub=1.5)
ranges <- t(sapply(list(x,y,z),range))
means <- rowMeans(ranges)
## label offset distance, as a fraction of the plot width
labelspace <- 0.12 ## tweak this until you like the result
xpos <- min(x)-(diff(range(x)))*labelspace
ypos <- min(y)-(diff(range(y)))*labelspace
labelbot3d <- c(xpos,ypos,min(z))
labeltop3d <- c(xpos,ypos,max(z))
labelmid3d <- c(xpos,ypos,mean(range(z)))
trans3dfun <- function(v) { grDevices::trans3d(v[1],v[2],v[3],p1) }
labelbot2d <- trans3dfun(labelbot3d)
labelmid2d <- trans3dfun(labelmid3d)
labeltop2d <- trans3dfun(labeltop3d)
labelang <- 180/pi*atan2(labeltop2d$y-labelbot2d$y,labeltop2d$x-labelbot2d$x)
graphics::par(xpd=NA,srt=labelang) ## disable clipping and set string rotation
graphics::text(labelmid2d[1]$x,labelmid2d$y,zlab1,cex=1.5)
}
if(dim(env_vars)[2]==3 && plot==TRUE){
data1 <- env_vars[!is.na(suits),]
dfd <- dim(data1)[1] - 1
dfn <- dim(data1)[2] - 1
# Ellipsoid radius
#ell.radius_E <- sqrt(dfn * qf(level, dfn, dfd))
suits2 <- suits[!is.na(suits)]
ellips_E <- rgl::ellipse3d(covar,centre = centroid,level = 0.99)
if(dfd > 50000)
np <- 50000
else
np <- dim(data1)[1]
toSam <- sample(1:length(data1[,1]),np)
data1 <- data1[toSam,]
rgl::plot3d(data1,size = size,col=grDevices::hsv(suits2[toSam]*.71,.95,.9),...)
rgl::wire3d(ellips_E, col=4, lit=FALSE,alpha=.1)
}
distances <- data.frame(mahalanobisD,ecucliedean)
data <- data.frame(env_vars,ncel=1:dim(env_vars)[1])
#data <- na.omit(data)
if(exists('coordinates')){
distances <- data.frame(coordinates,
env_vars,
distances,
ncel=1:dim(env_vars)[1])
distances <- stats::na.omit(distances)
suitsDF <- stats::na.omit(data.frame(coordinates,suitability=suits,env_vars))
suitRaster[] <- suits
names(suitRaster) <- "suitability"
return(list(suits=suitsDF,suitRaster=suitRaster,ncentedist=distances))
}
return(data.frame(suitability=suits,env_vars,ncentedist=distances))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.