R/mop.R

Defines functions mop

Documented in mop

#' MOP: Extrapolation risk analysis for model transfer
#'
#' @description mop calculates a Mobility-Oriented Parity
#' @param M_stack a RasterStack of variables representing the calibration area (M area in ENM context).
#' @param G_stack a RasterStack of variables representing areas or scenarios to which models will be transferred.
#' @param percent (numeric) percent of values sampled from the calibration region to calculate the MOP.
#' @param comp_each (numeric) compute distance matrix for a each fixed number of rows (default = 2000).
#' @param parallel (logical) if TRUE, calculations will be performed in parallel using the available
#' cores of the computer. This will demand more RAM and almost full use of the CPU; hence, its use
#' is more recommended in high-performance computers. Using this option will speed up the analyses.
#' Default = FALSE
#' @param ncores (numeric) Number of cores to be used if the process is going to be run in parallel
#' @param normalized (logical) if TRUE mop output will be normalized to 1.
#' @return A mobility-oriented parity RasterLayer where values of 0 represent strict extrapolation,
#' which means complete dissimilarity of environments between the calibration (M) and projection area (G).
#'
#' @details The MOP is calculated following Owens et al.
#' (2013; \url{https://doi.org/10.1016/j.ecolmodel.2013.04.011}). This function is a modification
#' of the MOP function, available at \url{https://github.com/narayanibarve/ENMGadgets}.The value of the comp_each parameter depends on the RAM memory available for the process; the computation can be faster if the user chooses a bigger value for this parameter but you have to be careful on memory use.
#' @importFrom future %<-%
#' @import future
#' @export
#'
#' @examples
#' \dontrun{
#' m_stack <- raster::stack(list.files(system.file("extdata",
#'                                                 package = "ntbox"),
#'                                     pattern = "M_layers.tif$",
#'                                     full.names = TRUE))
#' g_stack <- raster::stack(list.files(system.file("extdata",
#'                                                 package = "ntbox"),
#'                                     pattern = "G_layers.tif$",
#'                                     full.names = TRUE))
#'
#' mop_res <- ntbox::mop(M_stack = m_stack,
#'                       G_stack = g_stack, percent = 10,
#'                       comp_each=2000)
#' raster::plot(mop_res)
#' }

mop <- function(M_stack, G_stack, percent = 10, comp_each = 2000, parallel = FALSE,normalized=TRUE,ncores=4) {
  mop_raster <- G_stack[[1]]
  names(mop_raster) <- "MOP"
  mValues <- raster::getValues(M_stack)
  m_noNA <- stats::na.omit(mValues)
  m_naIDs <- attr(m_noNA,"na.action")
  gValues <- raster::getValues(G_stack)
  g_noNA <- stats::na.omit(gValues)
  g_naIDs <- attr(g_noNA,"na.action")

  ids_raster <- 1:dim(gValues)[1]
  if(length(g_naIDs)>0L)
    ids_raster <- ids_raster[- g_naIDs]
  m1 <- m_noNA
  m2 <- g_noNA


  if(dim(m1)[2] != dim(m2)[2]) {
    stop("Stacks must have the same dimensions.")
  }
  out_index <- plot_out(M1 = mValues,G1 = gValues)
  steps <- seq(1, dim(m2)[1], comp_each)
  kkk <- c(steps,  dim(m2)[1] + 1)
  long_k <- length(kkk)

  if (!parallel) {
    mop1 <- lapply(1:(length(kkk) - 1), function(x) {
      seq_rdist <- kkk[x]:(kkk[x + 1] - 1)
      eudist <- fields::rdist(m2[seq_rdist, ], m1)
      mean_quantile <- lapply(1:dim(eudist)[1], function(y) {
        di <- eudist[y, ]
        qdi <- stats::quantile(di, probs = percent / 100,
                               na.rm = TRUE)
        ii <-  which(di <= qdi)
        return(mean(di[ii]))
      })

      avance <- (x / long_k) * 100
      cat("Computation progress: ", avance,"%" ,"\n")

      return(unlist(mean_quantile))
    })

    mop_vals <- unlist(mop1)

  }else {
    n_cores <- ntbox::nc(ncores)
    #future::plan(tweak(multiprocess, workers =n_cores))
    options(future.globals.maxSize= 8500*1024^2,future.rng.onMisuse="ignore")
    multisession(globals =c("m1",
                            "m2",
                            "kkk",
                            "percent"),
                 workers = n_cores)
    mop_env <- new.env()
    pasos <- 1:(length(kkk) - 1)
    pasosChar <- paste0(pasos)

    for (paso in pasosChar) {
      x <- as.numeric(paso)
      mop_env[[paso]] %<-% {
        seq_rdist <- kkk[x]:(kkk[x + 1] - 1)
        eudist <- fields::rdist(m2[seq_rdist, ], m1)
        mop_dist <- lapply(1:dim(eudist)[1], function(y){
          di <- eudist[y, ]
          qdi <- stats::quantile(di, probs = percent / 100,
                                 na.rm = TRUE)
          ii <-  which(di <= qdi)
          pond_mean <- mean(di[ii],na.rm = TRUE)
          return(pond_mean)
        })
        mop <-unlist(mop_dist)
        return(mop)
      }
      avance <- (x / long_k) * 100
      cat("Computation progress: ", avance,"%" ,"\n")
    }

    mop_list <- as.list(mop_env)
    mop_names <- sort(as.numeric(as.character(names(mop_list))))
    mop_names <- as.character(mop_names)
    mop_vals <- unlist(mop_list[mop_names])
    future::plan(future::sequential)

  }

  mop_raster[ids_raster] <- mop_vals
  mop_max <- raster::cellStats(mop_raster,"max")* 1.05
  mop_raster[ out_index] <- mop_max
  if(normalized)
    mop_raster <- 1 - (mop_raster / mop_max)
  return(mop_raster)
}


#' Detection of environmental values outside the calibration area of a model
#'
#' @description plot.out for calculating a mobility-oriented parity layer.
#' This function is designed to be used specifically in the \code{\link{mop}} function.
#'
#' @param M1 a numeric matrix or raster object containing values of all environmental variables in the calibration area.
#' @param G1 a numeric matrix or raster object containing values of all environmental variables in the full area of interest.
#' @export

plot_out <- function (M1, G1) {
  if("RasterBrick" %in% class(M1) | "RasterStack"  %in% class(M1) | "raster" %in% class(M1)){
    M1 <- raster::values(M1)
  }

  if("RasterBrick" %in% class(G1) | "RasterStack"  %in% class(G1) | "raster" %in% class(G1)){
    G1 <- raster::values(G1)
  }

  d1 <- dim(M1)
  AllVec <- vector()

  for (i in 1:d1[2]) {
    MRange <- range(M1[, i])
    l1 <- which(G1[, i] < range(M1[, i], na.rm = T)[1] | G1[, i] > range(M1[, i], na.rm = T)[2])
    AllVec <- c(l1, AllVec)
  }

  AllVec <- unique(AllVec)

  return(AllVec)
}
luismurao/ntbox documentation built on May 9, 2024, 8:24 p.m.