R/phenoDist.R

Defines functions .discretizeDataFrame phenoDist

Documented in phenoDist

#' Calculate distance between two vectors, rows of one matrix/dataframe, or
#' rows of two matrices/dataframes.
#'
#' This function does some simple looping to allow x and y to be various
#' combinations of vectors and matrices/dataframes.
#'
#'
#' @param x A vector, matrix or dataframe
#' @param y NULL, a vector, matrix, or dataframe.  If x is a vector, y must
#' also be specified.
#' @param bins discretize continuous fields in the specified number of bins
#' @param vectorDistFun A function of two vectors that returns the distance
#' between those vectors.
#' @param \dots Extra arguments passed on to vectorDistFun
#' @return a matrix of distances between pairs of rows of x (if y is
#' unspecified), or between all pairs of rows between x and y (if both are
#' provided).
#' @author Levi Waldron, Markus Riester, Marcel Ramos
#' @examples
#'
#' example("phenoFinder")
#'
#' pdat1 <- pData(esets2[[1]])
#' pdat2 <- pData(esets2[[2]])
#'
#' ## Use phenoDist() to calculate a weighted distance matrix
#' distmat <- phenoDist(as.matrix(pdat1), as.matrix(pdat2))
#' ## Note outliers with identical clinical data, these are probably the same patients:
#' graphics::boxplot(distmat)
#'
#' \dontrun{
#'    library(curatedOvarianData)
#'    data(GSE32063_eset)
#'    data(GSE17260_eset)
#'    pdat1 <- pData(GSE32063_eset)
#'    pdat2 <- pData(GSE17260_eset)
#'    ## Curation of the alternative sample identifiers makes duplicates stand out more:
#'    pdat1$alt_sample_name <-
#'      paste(pdat1$sample_type,
#'            gsub("[^0-9]", "", pdat1$alt_sample_name),
#'            sep = "_")
#'    pdat2$alt_sample_name <-
#'      paste(pdat2$sample_type,
#'            gsub("[^0-9]", "", pdat2$alt_sample_name),
#'            sep = "_")
#'    ## Removal of columns that cannot possibly match also helps duplicated patients to stand out
#'    pdat1 <-
#'      pdat1[,!grepl("uncurated_author_metadata", colnames(pdat1))]
#'    pdat2 <-
#'      pdat2[,!grepl("uncurated_author_metadata", colnames(pdat2))]
#'    ## Use phenoDist() to calculate a weighted distance matrix
#'    distmat <- phenoDist(as.matrix(pdat1), as.matrix(pdat2))
#'    ## Note outliers with identical clinical data, these are probably the same patients:
#'    graphics::boxplot(distmat)
#' }
#'
#' @export phenoDist
phenoDist <- function(x, y = NULL, bins = 10,
    vectorDistFun = vectorWeightedDist, ...) {
    if (is.vector(x) && is.vector(y)) {
        z <- vectorDistFun(matrix(x, nrow = 1), matrix(y, nrow = 1), 1, 1, ...)
    } else {
        x <- .discretizeDataFrame(x, bins)
        if (is.null(y)) {
            z <- matrix(0, nrow = nrow(x), ncol = nrow(x))
            for (k in 1:(nrow(x) - 1)) {
                for (l in (k + 1):nrow(x)) {
                    z[k, l] <- vectorDistFun(x, x, k, l, ...)
                    z[l, k] <- z[k, l]
                }
            }
            dimnames(z) <- list(rownames(x), rownames(x))
        } else {
            y <- .discretizeDataFrame(y, bins)
            z <- matrix(0, nrow = nrow(x), ncol = nrow(y))
            for (k in 1:(nrow(x))) {
                for (l in 1:nrow(y)) {
                    z[k, l] <- vectorDistFun(x, y, k, l, ...)
                }
            }
            dimnames(z) <- list(rownames(x), rownames(y))
        }
    }
    z
}

.discretizeDataFrame <- function(X, bins) {
  .discretizeRow <- function(x) {
    if (length(levels(as.factor(x))) > bins)
      return(cut(x, breaks = bins))
    as.factor(x)
  }
  idx <- apply(X, 2L, is.numeric)
  if (sum(idx) == 0)
    return(X)
  X[, idx] <-
    as.data.frame(apply(X[, idx, drop = FALSE], 2, .discretizeRow))
  X
}
lwaldron/doppelgangR documentation built on Nov. 2, 2024, 9:28 a.m.