R/simulate_r2_hf.R

Defines functions simulate_r2_hf

Documented in simulate_r2_hf

#' Calculates the expected squared correlation between heteorzygosity and inbreeding for simulated marker sets
#' 
#' This function can be used to simulate genotype data, draw random subsamples and calculate the
#' expected squared correlations between heterozygosity and fitness (\eqn{r2(h, f)}).
#' Every subset of markers is drawn independently to give insights
#' into the variation and precision of \eqn{r2(h, f)} calculated from a given number of markers and individuals.
#' 
#' @param n_ind number of individuals to sample from the population
#' @param H_nonInb true genome-wide heteorzygosity of a non-inbred individual
#' @param meanF mean realized inbreeding f
#' @param varF variance in realized inbreeding f
#' @param subsets a vector specifying the sizes of marker-subsets to draw. Specifying  \code{subsets = c(2, 5, 10, 15, 20)} 
#'        would draw marker sets of 2 to 20 markers. The minimum number of markers is 2.
#' @param reps number of resampling repetitions
#' @param type specifies g2 formula. Type "snps" for large datasets and "msats" for smaller datasets.
#' @param CI Confidence intervals to calculate (default to 0.95)
#'
#' @details The \code{simulate_r2_hf} function simulates genotypes from which subsets of loci can be sampled independently. 
#'          These simulations can be used to evaluate the effects of the number of individuals 
#'          and loci on the precision and magnitude of the expected squared correlation between heterozygosity and inbreeding 
#'          (\eqn{r2(h, f)}). The user specifies the number of simulated individuals (\code{n_ind}), the subsets of 
#'          loci (\code{subsets}) to be drawn, the heterozygosity of non-inbred individuals (\code{H_nonInb}) and the 
#'          distribution of \emph{f} among the simulated individuals. The \emph{f} values of the simulated individuals are sampled
#'          randomly from a beta distribution with mean (\code{meanF}) and variance (\code{varF}) specified by the user 
#'          (e.g. as in wang2011). This enables the simulation to mimic populations with known inbreeding 
#'          characteristics, or to simulate hypothetical scenarios of interest. For computational simplicity, allele 
#'          frequencies are assumed to be constant across all loci and the simulated loci are unlinked. Genotypes
#'          (i.e. the heterozygosity/homozygosity status at each locus) are assigned stochastically based on the \emph{f}
#'          values of the simulated individuals. Specifically, the probability of an individual being heterozygous at
#'          any given locus (\eqn{H}) is expressed as \eqn{H = H0(1-f)} , where \eqn{H0} is the user-specified heterozygosity of a 
#'          non-inbred individual and \emph{f} is an individual's inbreeding coefficient drawn from the beta distribution.
#'          
#' @return
#' \code{simulate_r2_hf} returns an object of class "inbreed".
#' The functions `print` and `plot` are used to print a summary and to plot the r2(h, f) values with means and confidence intervals
#' 
#' An `inbreed` object from  \code{simulate_g2} is a list containing the following components:
#' \item{call}{function call.}
#' \item{estMat}{matrix with all r2(h,f) estimates. Each row contains the values for a given subset of markers}
#' \item{n_ind}{specified number of individuals}
#' \item{subsets}{vector specifying the marker sets}
#' \item{reps}{repetitions per subset}
#' \item{H_nonInb}{true genome-wide heteorzygosity of a non-inbred individual}
#' \item{meanF}{mean realized inbreeding f}
#' \item{varF}{variance in realized inbreeding f}
#' \item{min_val}{minimum g2 value}
#' \item{max_val}{maximum g2 value}
#' \item{all_CI}{confidence intervals for all subsets}
#' \item{all_sd}{standard deviations for all subsets}
#'      
#' @author  Marty Kardos ([email protected]@ebc.uu.se) &
#'          Martin A. Stoffel ([email protected]@gmail.com) 
#'          
#' @examples 
#' data(mouse_msats)
#' genotypes <- convert_raw(mouse_msats)
#' sim_r2 <- simulate_r2_hf(n_ind = 10, H_nonInb = 0.5, meanF = 0.2, varF = 0.03,
#'                       subsets = c(4,6,8,10), reps = 100, 
#'                       type = "msats")
#' plot(sim_r2)
#' @export



simulate_r2_hf <- function(n_ind = NULL, H_nonInb = 0.5, meanF = 0.2, varF = 0.03,
                        subsets = NULL, reps = 100, type = c("msats", "snps"),
                        CI = 0.95) {
    ################################################################################
    # simulate a population with variable inbreeding
    # then estimate g2 from independently sampled / non-overlapping subsets of loci 
    ################################################################################
    
    if ((H_nonInb > 1) | (H_nonInb < 0)) stop("H_nonInb has to be a value between 0 and 1")
    if ((meanF > 1) | (meanF < 0)) stop("meanF has to be a value between 0 and 1")
    if (varF < 0) stop("meanF has to be a value between 0 and 1")
    
    # number of individuals to sample from the population
    if (is.null(n_ind))   stop("Specify the number of individuals to sample with n_ind")  
    # subsets of loci to sample   
    if (is.null(subsets)) stop("specify the size of loci subsamples in 'subsets', i.e. subsets = c(2,4,6,8) to 
                               calculate g2 from up to 8 loci")
    if (any(subsets < 2)) stop("Specify a minimum of 2 markers in subsets")
    if (!isTRUE(all(subsets == floor(subsets)))) stop("'subsets' must only contain integer values")
    
    # check g2 function argument
    if (length(type) == 2){
        type <- "msats"
    } else if (!((type == "msats")|(type == "snps"))){
        stop("type argument needs to be msats or snps")
    } 
    
    # total number of loci to simulate
    n_loc <- subsets[length(subsets)]
    allLoci <- reps*n_loc                            
    
    ##############################################
    # sample F values from a beta distribution
    # following previous work from Jinliang Wang
    # (2011, Heredity 107, pp. 433-443)
    ##############################################
    
    alpha <- ((1 - meanF) / varF - (1 / meanF)) * meanF ^ 2    # parameters of the beta distribution given the mean and variance of realized F
    beta <- alpha * ((1 / meanF) - 1)
    
    Fs <- stats::rbeta(n_ind, alpha, beta)   # vector of realized F for the simulated individuals
    
    #-------------------------
    # simulate the individual 
    # genotypes
    #-------------------------
    
    hets <- NULL        # initialize a data frame to store the genotypic information
    
    for (i in 1:n_ind) {
        
        thisHet <- NULL                       # randomly select a TRUE genome-wide MLH (i.e., the proportion of hypothetically infinitely many loci that are heterozygous in the ith individual)
        thisHet <- H_nonInb*(1-Fs[i])
        
        rands <- NULL                         # randomly generated numbers between 0 and 1 that are used to determine whether the individual is heterozygous at each locus
        rands <- stats::runif(allLoci,min=0,max=1)
        
        theseHets <- NULL
        theseHets <- as.numeric(rands < thisHet)
        
        hets <- rbind(hets,theseHets)
    }
    
    #------------------------------------------------------------------------
    # repetitively subsample the loci independently, each time estimating g2
    #------------------------------------------------------------------------
    
    estMat <- NULL    # matrix to store teh g2 estimates
    sampCols <- 1:ncol(hets)    # vector of loci that are available for sampling
    
    
    estMat <- NULL
    
    for (i in 1:length(subsets))    # loop through the differen subsample sizes
    {
        theseEsts <- rep(NA,reps)    # vector to store the estimates from this number of loci
        for (j in 1:reps)
        {
            theseSampCols <- NULL                                       # get a new independent sample of loci
            theseSampCols <- sample(sampCols,subsets[i],replace=FALSE)
            
            theseGenos <- NULL
            theseGenos <- hets[,theseSampCols]
            
            theseEsts[j] <- r2_hf(genotypes = theseGenos, type = type)$r2_hf_full
            sampCols <- sampCols[-theseSampCols]
            
        }
        
        estMat <- rbind(estMat,theseEsts)
        sampCols <- 1:ncol(hets)    # reconstitute the original vector of loci that are available for sampling
        print(paste("done with subsampling of ",subsets[i]," loci",sep=""))
        
    }
    estMat <- unname(estMat)
    # get the upper and lower bounds of the y-axis
    
    minr2 <- min(estMat)
    maxr2 <- max(estMat)
    
    # calculate CIs and SDs
    calc_CI <- function(estMat_subset) {
        stats::quantile(estMat_subset, c((1-CI)/2,1-(1-CI)/2), na.rm=TRUE)
    }
    
    all_CI <- t(apply(estMat, 1, calc_CI))
    all_sd <- apply(estMat, 1, stats::sd)
    
    res <- list(call=match.call(),
                estMat = estMat,
                n_ind = n_ind,
                subsets = subsets,
                reps = reps,
                H_nonInb =  H_nonInb,
                meanF = meanF,
                varF = varF,
                min_val = minr2,
                max_val = maxr2,
                all_CI = all_CI,
                all_sd = all_sd
    )
    
    class(res) <- "inbreed"
    return(res)
}
mastoffel/inbreedR documentation built on May 21, 2019, 12:43 p.m.