Description Usage Arguments Value References Examples
Function to extract the coefficients of the PLS models.
1 2 3  | 
object | 
 a sgspls object, parameters will be extracted from the object.  | 
type | 
 a vector of the type of coefficients to be extracted. Can be 
the regression   | 
comps | 
 a vector of the components that should be returned.  | 
... | 
 not used currently.  | 
coef returns a list with the required measures.
Liquet Benoit, Lafaye de Micheaux, Boris Hejblum, Rodolphe Thiebaut. A group and Sparse Group Partial Least Square approach applied in Genomics context. Submitted.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  |  set.seed(1)
 n = 50; p = 500; 
 size.groups = 30; size.subgroups = 5
 groupX <- ceiling(1:p / size.groups)
 subgroupX <- ceiling(1:p / size.subgroups)
 
 X = matrix(rnorm(n * p), ncol = p, nrow = n)
 
 beta <- rep(0,p)
 bSG <- -2:2; b0 <- rep(0,length(bSG))
 betaG <- c(bSG, b0, bSG, b0, bSG, b0)
 beta[1:size.groups] <- betaG
 
 y = X %*% beta + 0.1*rnorm(n)
 
model <- sgspls(X, y, ncomp = 3, mode = "regression", keepX = 1,
                groupX = groupX, subgroupX = subgroupX,
                indiv_sparsity_x = 0.8, subgroup_sparsity_x = 0.15)
 
 # get the regression coefficients
 model_coef <- coef(model, type = "coefficients", comps = 3)
 
 # check fit
 cbind(beta, model_coef$B)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.