grapheneArgon = as.data.frame(readxl::read_excel("examples/data/grapheneArgon.xlsx"))
# define parameter spce
psOpt = ParamHelpers::makeParamSet(
ParamHelpers::makeIntegerParam("power", lower = 10, upper = 5555),
ParamHelpers::makeIntegerParam("time", lower = 500, upper = 20210),
ParamHelpers::makeIntegerParam("pressure", lower = 0, upper = 100)
)
# create task
task_grapheneArgon = EBO::task(
simulation = "regr.randomForest",
data = grapheneArgon,
target = "ratio",
psOpt = psOpt,
minimize = FALSE
)
ctrl = mlrMBO::makeMBOControl()
ctrl = mlrMBO::setMBOControlInfill(ctrl, crit = mlrMBO::makeMBOInfillCritCB(4))
# define MBO configuration
paramsMBO = data.table::data.table(
design = list(NULL,"optimumLHS"),
amountDesign = list(4),
control = list(NULL,
ctrl),
surrogate = list(NULL,
mlr::makeLearner("regr.km", predict.type = "se", covtype = "powexp", nugget.estim = TRUE))
)
# define names
namesBoxplot = c("mlrMBO default",
"mlrMBO tuned")
# define function evaluations
funcEvals = 55
# generate Data
grapConfigResults = EBO::generateConfigdata(task_grapheneArgon, funcEvals = funcEvals, paramsMBO,
namesBoxplot = namesBoxplot, repls = 20, seed = 1235)
eval1 = EBO::boxplotCurve(grapConfigResults)
kapton = as.data.frame(readxl::read_excel("examples/data/kaptonArgon.xlsx"))
# define parameter spce
psOpt = ParamHelpers::makeParamSet(
ParamHelpers::makeIntegerParam("power", lower = 10, upper = 5555),
ParamHelpers::makeIntegerParam("time", lower = 500, upper = 20210),
ParamHelpers::makeIntegerParam("pressure", lower = 0, upper = 1000)
)
# create task
task_Kapton = EBO::task(
simulation = "regr.randomForest",
data = kapton,
target = "ratio",
psOpt = psOpt,
minimize = FALSE
)
ctrl = mlrMBO::makeMBOControl()
ctrl = mlrMBO::setMBOControlInfill(ctrl, crit = mlrMBO::makeMBOInfillCritCB(3))
# define MBO configuration
paramsMBO = data.table::data.table(
design = list(NULL,
"optimumLHS"),
amountDesign = list(4),
control = list(NULL,
ctrl),
surrogate = list(NULL,
mlr::makeLearner("regr.km", predict.type = "se", covtype = "powexp", nugget.estim = TRUE))
)
# define names
namesBoxplot = c("mlrMBO default",
"mlrMBO tuned")
# define function evaluations
funcEvals = 55
# generate Data
kaptConfigResults = EBO::generateConfigdata(task_Kapton, funcEvals = funcEvals, paramsMBO,
namesBoxplot = namesBoxplot, repls = 20, seed = 1)
eval2 = EBO::boxplotCurve(kaptConfigResults)
synthesis = openxlsx::read.xlsx("examples/data/synthesis.xlsx")
# define parameter spce
psOpt = ParamHelpers::makeParamSet(
ParamHelpers::makeNumericParam("f", lower = 0, upper = 0.25),
ParamHelpers::makeNumericParam("k", lower = 0, upper = 0.1),
ParamHelpers::makeNumericParam("du", lower = 0, upper = 1),
ParamHelpers::makeNumericParam("dv", lower = 0, upper = 1)
)
# create task
task_synt = EBO::task(
simulation = "regr.randomForest",
data = synthesis,
target = "interface",
psOpt = psOpt,
minimize = FALSE
)
ctrl = mlrMBO::makeMBOControl()
ctrl = mlrMBO::setMBOControlInfill(ctrl, crit = mlrMBO::makeMBOInfillCritCB(3))
# define MBO configuration
paramsMBO = data.table::data.table(
design = list(NULL),
amountDesign = list(NULL),
control = list(NULL,
ctrl),
surrogate = list(NULL,
mlr::makeLearner("regr.km", predict.type = "se", covtype = "powexp", nugget.estim = TRUE))
)
# define names
namesBoxplot = c("mlrMBO default",
"mlrMBO tuned")
# define function evaluations
funcEvals = 55
# generate Data
syntConfigResults = EBO::generateConfigdata(task_synt, funcEvals = funcEvals, paramsMBO,
namesBoxplot = namesBoxplot, repls = 20, seed = 1)
eval3 = EBO::boxplotCurve(syntConfigResults)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.