#' Parallelized Parametric Rao's index of quadratic entropy (Q)
#'
#' This function computes the parametric Rao's index of quadratic entropy (Q), a measure of biodiversity
#' that considers the evolutionary distances between species, utilizing parallel computing for enhanced
#' performance. The computation is applied over a moving window across the input data.
#'
#' @param x Matrix or data frame; the input data over which the index calculation is performed.
#' @param alpha Numeric; specifies the alpha value for the order of diversity in Hill's Index.
#' @param window Numeric; half of the side length of the square moving window used in the calculation.
#' @param dist_m Character; specifies the type of distance metric used in calculations.
#' @param na.tolerance Numeric; the threshold proportion of NA values allowed in the moving window.
#' If exceeded, the calculation for that window is skipped. Values range from 0.0 (no tolerance) to 1.0.
#' @param diag Logical; indicates whether the diagonal of the distance matrix should be included in the
#' computation. Typically set to FALSE.
#' @param debugging Logical; set to FALSE by default. If TRUE, additional console messages will be
#' displayed for debugging purposes.
#' @param isfloat Logical; indicates whether the input data values are floating-point numbers.
#' @param mfactor Integer; multiplication factor in case of input data as float numbers.
#' @param np Number of processes for parallel computation.
#' @param progBar logical. If TRUE a progress bar is shown.
#' @return A list of matrices corresponding to the computed Rao's index values. Each matrix in the list
#' represents the calculations performed over the moving window, with dimensions equal to \code{dim(x)}.
#' @author Duccio Rocchini \email{duccio.rocchini@@unibo.it},
#' Matteo Marcantonio \email{marcantoniomatteo@@gmail.com}
#' @seealso \code{\link{paRao}} for the related non-parallelized function.
paRaoP <- function(x,alpha,window,dist_m,na.tolerance,diag,debugging,isfloat,mfactor,np,progBar) {
# `win` is the operative moving window
win = window
NAwin <- 2*window+1
message("\nProcessing alpha: ",alpha, " Moving Window: ", NAwin)
# Set a progress bar
if(progBar) {
pb <- progress::progress_bar$new(
format = "[:bar] :percent in :elapsed\n",
# Total number of ticks is the number of column +NA columns divided the number of processor.
total = floor((dim(x)[2]+win)/np)+ceiling((dim(x)[2]+win)*0.01),
clear = FALSE,
width = 60,
force = FALSE)
}
# Some initial housekeeping
mfactor <- ifelse(isfloat,mfactor,1)
diagonal <- ifelse(diag==TRUE,0,NA)
tdist <- proxy::dist(as.numeric(levels(as.factor(x))),method=dist_m)
# Min and max dist for initial checks on possible infinite or 0 operations
maxd <- max(proxy::dist(as.numeric(levels(as.factor(x))),method=dist_m))
mind <- min(tdist[tdist>0])
# If alpha ~ +infinite
if( alpha >= .Machine$integer.max | is.infinite(alpha) | is.infinite(maxd^alpha) | (dist_m=="canberra" & mind^alpha==0) ) {
# Reshape values
values <- as.numeric(as.factor(x))
x_1 <- matrix(data=values,nrow=dim(x)[1],ncol=dim(x)[2])
# Add additional columns and rows to match moving window
hor <- matrix(NA,ncol=dim(x)[2],nrow=win)
ver <- matrix(NA,ncol=win,nrow=dim(x)[1]+win*2)
tx <- cbind(ver,rbind(hor,x_1,hor),ver)
rm(hor,ver,x_1,values)
gc()
if( debugging ) {
cat("#check: Parametric Rao parallel function.")
}
# Derive distance matrix
if( is.character( dist_m) | is.function(dist_m) ) {
d1 <- proxy::dist(as.numeric(levels(as.factor(x))),method=dist_m)
} else if( is.matrix(dist_m) | is.data.frame(dist_m) ) {
d1 <- stats::as.dist(stats::xtabs(dist_m[, 3] ~ dist_m[, 2] + dist_m[, 1]))
}
out <- foreach::foreach(cl=(1+win):(dim(x)[2]+win),.verbose = F) %dopar% {
if(debugging) {cat(paste(cl))}
# Update progress bar
if(progBar) pb$tick()
# Row loop
paRaoOP <- sapply((1+win):(dim(x)[1]+win), function(rw) {
if( length(!which(!tx[c(rw-win):c(rw+win),c(cl-win):c(cl+win)]%in%NA)) < floor(NAwin^2-((NAwin^2)*na.tolerance) ) ) {
vv <- NA
return(vv)
}else{
tw <- summary(as.factor(tx[c(rw-win):c(rw+win),c(cl-win):c(cl+win)]),maxsum=10000)
if( "NA's"%in%names(tw) ) {
tw <- tw[-length(tw)]
}
if( debugging ) {
message("Working on coords ",rw,",",cl,". classes length: ",length(tw),". window size=",window^2)
}
tw_labels <- names(tw)
tw_values <- as.vector(tw)
#if clause to exclude windows with only 1 category
if( length(tw_values) < 2 ) {
vv <- 0
return(vv)
}else{
d2 <- unname(as.matrix(d1)[as.numeric(tw_labels),as.numeric(tw_labels)])
vv <- max(d2*2,na.rm=TRUE) / mfactor
return(vv)
}
}
})
return(paRaoOP)
} #End classic Parametric Rao - parallelized
return(do.call(cbind,out))
# If alpha is > 0
}else if( alpha>0 ) {
#
##Reshape values
#
values <- as.numeric(as.factor(x))
x_1 <- matrix(data=values,nrow=dim(x)[1],ncol=dim(x)[2])
#
##Add additional columns and rows to match moving window
#
hor<-matrix(NA,ncol=dim(x)[2],nrow=win)
ver<-matrix(NA,ncol=win,nrow=dim(x)[1]+win*2)
tx<-cbind(ver,rbind(hor,x_1,hor),ver)
rm(hor,ver,x_1,values); gc()
if(debugging){cat("#check: Parametric Rao parallel function.")}
#
##Derive distance matrix
#
if( is.character( dist_m) | is.function(dist_m) ) {
d1<-proxy::dist(as.numeric(levels(as.factor(x))),method=dist_m)
}else if( is.matrix(dist_m) | is.data.frame(dist_m) ) {
d1<-stats::as.dist(stats::xtabs(dist_m[, 3] ~ dist_m[, 2] + dist_m[, 1]))
}
out <- foreach::foreach(cl=(1+win):(dim(x)[2]+win),.verbose = F) %dopar% {
if(debugging) {
cat(paste(cl))
}
# Update progress bar
if(progBar) pb$tick()
# Row loop
paRaoOP <- sapply((1+win):(dim(x)[1]+win), function(rw) {
if( length(!which(!tx[c(rw-win):c(rw+win),c(cl-win):c(cl+win)]%in%NA)) < floor(NAwin^2-((NAwin^2)*na.tolerance)) ) {
vv <- NA
return(vv)
}else{
tw <- summary(as.factor(tx[c(rw-win):c(rw+win),c(cl-win):c(cl+win)]),maxsum=10000)
if( "NA's"%in%names(tw) ) {
tw<-tw[-length(tw)]
}
if( debugging ) {
message("Working on coords ",rw,",",cl,". classes length: ",length(tw),". window size=",window^2)
}
tw_labels <- names(tw)
tw_values <- as.vector(tw)
#if clause to exclude windows with only 1 category
if( length(tw_values) < 2 ) {
vv <- 0
return(vv)
}else{
p <- tw_values/sum(tw_values,na.rm=TRUE)
p1 <- diag(0,length(tw_values))
p1[lower.tri(p1)] <- c(utils::combn(p,m=2,FUN=prod,na.rm=TRUE))
d2 <- unname(as.matrix(d1)[as.numeric(tw_labels),as.numeric(tw_labels)])
vv <- (sum((p1)*(d2^alpha)*2,na.rm=TRUE)^(1/alpha) ) / mfactor
return(vv)
}
}
})
return(paRaoOP)
} #End classic Parametric Rao - parallelized
return(do.call(cbind,out))
}else if( alpha==0 ) {
#
##Reshape values
#
values<-as.numeric(as.factor(x))
x_1<-matrix(data=values,nrow=dim(x)[1],ncol=dim(x)[2])
#
##Add additional columns and rows to match moving window
#
hor<-matrix(NA,ncol=dim(x)[2],nrow=win)
ver<-matrix(NA,ncol=win,nrow=dim(x)[1]+win*2)
tx<-cbind(ver,rbind(hor,x_1,hor),ver)
rm(hor,ver,x_1,values); gc()
if(debugging){cat("#check: Parametric Rao parallel function.")}
#
##Derive distance matrix
#
if( is.character( dist_m) | is.function(dist_m) ) {
d1<-proxy::dist(as.numeric(levels(as.factor(x))),method=dist_m)
}else if( is.matrix(dist_m) | is.data.frame(dist_m) ) {
d1<-stats::as.dist(stats::xtabs(dist_m[, 3] ~ dist_m[, 2] + dist_m[, 1]))
}
out <- foreach::foreach(cl=(1+win):(dim(x)[2]+win),.verbose = F) %dopar% {
if(debugging) {
cat(paste(cl))
}
# Update progress bar
if(progBar) pb$tick()
# Row loop
paRaoOP <- sapply((1+win):(dim(x)[1]+win), function(rw) {
if( length(!which(!tx[c(rw-win):c(rw+win),c(cl-win):c(cl+win)]%in%NA)) <= (window^2-((window^2)*na.tolerance)) ) {
vv <- NA
return(vv)
}else{
tw <- summary(as.factor(tx[c(rw-win):c(rw+win),c(cl-win):c(cl+win)]),maxsum=10000)
if( "NA's"%in%names(tw) ) {
tw<-tw[-length(tw)]
}
if( debugging ) {
message("Working on coords ",rw,",",cl,". classes length: ",length(tw),". window size=",window^2)
}
tw_labels <- names(tw)
tw_values <- as.vector(tw)
#if clause to exclude windows with only 1 category
if( length(tw_values) < 2 | ( length(which(!is.na(tw_values))) < 2 ) ) {
vv <- 0
return(vv)
}else{
p <- tw_values/sum(tw_values)
p1 <- diag(0,length(tw_values))
p1[lower.tri(p1)] <- c(utils::combn(p, m=2, FUN=prod, na.rm=TRUE))
d2 <- unname( proxy::as.matrix(d1,diag=diagonal)[as.numeric(tw_labels),as.numeric(tw_labels)] )
vv <- (prod(d2,na.rm=TRUE)^(1/(window^2))) / mfactor
return(vv)
}
}
})
return(matrix(unlist(paRaoOP), ncol = ncol(x), nrow = nrow(x), byrow=FALSE))
}
return(do.call(cbind,out))
}else{stop("Something went wrong. Exiting...")}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.