inst/rmgarch.tests/rmgarch.test4.R

#################################################################################
##
##   R package rmgarch by Alexios Ghalanos Copyright (C) 2008-2013.
##   This file is part of the R package rmgarch.
##
##   The R package rmgarch is free software: you can redistribute it and/or modify
##   it under the terms of the GNU General Public License as published by
##   the Free Software Foundation, either version 3 of the License, or
##   (at your option) any later version.
##
##   The R package rmgarch is distributed in the hope that it will be useful,
##   but WITHOUT ANY WARRANTY; without even the implied warranty of
##   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
##   GNU General Public License for more details.
##
#################################################################################



#################################################################################
# Scenario Tests (replication)
#################################################################################

rmgarch.test4a = function(cluster = NULL)
{
	tic = Sys.time()
	data(dji30retw)
	Dat = dji30retw[, 1:15, drop = FALSE]
	
	uspec = ugarchspec(mean.model = list(armaOrder = c(2,0)), 
			variance.model = list(garchOrder = c(1,1), model = "csGARCH"), 
			distribution.model = "std")
	spec1 = cgarchspec(uspec = multispec( replicate(15, uspec) ), 
			distribution.model = list(copula = "mvt", method = "Kendall", 
					time.varying = TRUE, transformation = "parametric"))
		
	scen.cgarch = fscenario(Data = Dat, sim = 5000, roll = 0, model = "cgarch", 
			fit.control=list(eval.se = FALSE),
			spec = spec1, solver = "solnp", cluster = cluster, rseed = 120)
	
	scen.cgarch.check = fscenario(Data = Dat, sim = 200, roll = 0, 
			model = "cgarch", fit.control=list(eval.se = FALSE),
			spec = spec1, solver = "solnp", cluster = cluster, rseed = 120)
	
	## Check for replication of results with rseed
	
	options(width = 120)
	zz <- file("test4a-1.txt", open="wt")
	sink(zz)
	cat("\nreplication of results (cgarch)")
	all.equal(fitted(scen.cgarch)[1:200,,1], fitted(scen.cgarch.check)[1:200,,1])
	sink(type="message")
	sink()
	close(zz)
	
	# Notice that it is quite possible to get values < -1 in the weekly scenario. 
	# These should be removed/adjusted.
	idx = which(fitted(scen.cgarch)[,,1]<=(-1), arr.ind=TRUE)
	if(NROW(idx)>0) scen.cgarch@scenario$simMu[[1]][idx[,1],idx[,2]] = -0.9
	# check extractor method (fitted):
	options(width = 120)
	zz <- file("test4a-2.txt", open="wt")
	sink(zz)
	print(dim(fitted(scen.cgarch)))
	print(head(fitted(scen.cgarch)[,,1]))
	print(apply(fitted(scen.cgarch)[,,1], 2, "summary"))
	print(apply(fitted(scen.cgarch)[,,1], 2, "sd"))
	sink(type="message")
	sink()
	close(zz)
	
	
	uspec = ugarchspec(mean.model = list(armaOrder = c(2,0)), 
			variance.model = list(garchOrder = c(1,1), model = "csGARCH"), 
			distribution.model = "norm")
	spec2 = dccspec(uspec = multispec( replicate(15, uspec) ), 
			distribution = "mvt")
	
	scen.dcc = fscenario(Data = Dat, sim = 5000, roll = 0, model = "dcc", 
			fit.control = list(eval.se = FALSE), solver.control=list(trace=1),
			spec = spec2, solver = "solnp", cluster = cluster, rseed = 120)
	
	scen.dcc.check = fscenario(Data = Dat, sim = 200, roll = 0, model = "dcc", 
			fit.control = list(eval.se = FALSE), spec = spec2, solver = "solnp", 
			cluster = cluster, rseed = 120)
	
	
	idx = which(fitted(scen.dcc)[,,1]<=(-1), arr.ind=TRUE)
	if(NROW(idx)>0) scen.dcc@scenario$simMu[[1]][idx[,1],idx[,2]] = -0.9
	
	options(width = 120)
	zz <- file("test4a-3.txt", open="wt")
	sink(zz)
	cat("\nreplication of results (dcc)")
	all.equal(fitted(scen.dcc)[1:200,,1], fitted(scen.dcc.check)[1:200,,1])
	print(dim(fitted(scen.dcc)))
	print(head(fitted(scen.dcc)[,,1]))
	print(apply(fitted(scen.dcc)[,,1], 2, "summary"))
	print(apply(fitted(scen.dcc)[,,1], 2, "sd"))
	sink(type="message")
	sink()
	close(zz)
	
	
	spec3 = gogarchspec(mean.model = list(model = "AR", lag = 2), 
			variance.model = list(model = "csGARCH", garchOrder = c(1,1)), 
			distribution.model = c("mvnorm", "manig", "magh")[2], 
			ica = "fastica")
	
	scen.gg = fscenario(Data = Dat, sim = 5000, roll = 0, model = "gogarch", 
			spec = spec3, solver = "solnp", cluster = cluster, rseed = 120,
			gfun = "tanh", maxiter1 = 100000)
	# exact replication requires to also pass the W matrix
	spec3x = gogarchspec(mean.model = list(model = "AR", lag = 2), 
			variance.model = list(model = "csGARCH", garchOrder = c(1,1)), 
			distribution.model = c("mvnorm", "manig", "magh")[2], 
			ica = "fastica", ica.fix = list(A = scen.gg@scenario$gogarch.options$A, 
					K = scen.gg@scenario$gogarch.options$K,
					W = scen.gg@scenario$gogarch.options$W))
	
	scen.gg.check = fscenario(Data = Dat, sim = 200, roll = 0, model = "gogarch", 
			spec = spec3x, solver = "solnp", cluster = cluster, rseed = 120)
	
	idx = which(fitted(scen.gg)[,,1]<=(-1), arr.ind=TRUE)
	if(NROW(idx)>0) scen.gg@scenario$simMu[[1]][idx[,1],idx[,2]] = -0.9
	
	options(width = 120)
	zz <- file("test4a-4.txt", open="wt")
	sink(zz)
	cat("\nreplication of results (GO-GARCH)")
	all.equal(fitted(scen.gg)[1:200,,1], fitted(scen.gg.check)[1:200,,1])
	print(dim(fitted(scen.gg)))
	print(head(fitted(scen.gg)[,,1]))
	print(apply(fitted(scen.gg)[,,1], 2, "summary"))
	print(apply(fitted(scen.gg)[,,1], 2, "sd"))
	sink(type="message")
	sink()
	close(zz)
	
	rowMeans = function(x) t(apply(x, 1, "mean"))
	postscript("test4a-1.eps", width = 10, height = 10)
	# Linear transformation (weights) require discrete returns
	plot(density(rowMeans(exp(fitted(scen.dcc)[,,1])-1)), main = "EW Forecast Density \n(02-Feb-2009)", 
			ylim=c(0,12), xlim=c(-0.3, 0.4), col="steelblue", cex.main=0.9)
	lines(density(rowMeans(exp(fitted(scen.cgarch)[,,1])-1)), col = "tomato1")
	lines(density(rowMeans(exp(fitted(scen.gg)[,,1])-1)), col = 3)
	legend("topleft", c("DCC-T(QML)", "DCC-Copula-T", "GO-GARCH (NIG)"), col = c("steelblue", "tomato1", "green"), bty="n",
			lty = c(1,1,1))
	grid()
	dev.off()
	
	
	postscript("test4a-2.eps", width = 8, height = 12)
	par(mfrow=c(3,1))
	boxplot(scen.cgarch@scenario$simMu[[1]], ylim = c(-0.3, 0.5), names = colnames(Dat), main = "DCC-Copula-T")
	
	boxplot(scen.dcc@scenario$simMu[[1]], ylim = c(-0.3, 0.5), names = colnames(Dat), main = "DCC-T(QML)")
	points(1:15, scen.dcc@scenario$forecastMu, col = 2, pch = 3)
	
	boxplot(scen.gg@scenario$simMu[[1]], ylim = c(-0.3, 0.5), names = colnames(Dat), main = "GO-GARCH (NIG)")
	points(1:15, scen.gg@scenario$forecastMu, col = 2, pch = 3)
	
	dev.off()
	
	zz <- file("test4a-5.txt", open="wt")
	sink(zz)
	cat("\nCGARCH Summary")
	apply(fitted(scen.cgarch)[,,1], 2, "summary")
	cat("\nDCC Summary")
	apply(fitted(scen.dcc)[,,1], 2, "summary")
	scen.dcc@scenario$forecastMu	
	cat("\nGO-GARCH Summary")
	apply(fitted(scen.gg)[,,1], 2, "summary")
	
	sink(type="message")
	sink()
	close(zz)
	
	
	toc = Sys.time()-tic
	cat("Elapsed:", toc, "\n")
	return(toc)
}


#################################################################################
# Moments Tests
#################################################################################

rmgarch.test4b = function(cluster = NULL)
{
	tic = Sys.time()
	data(dji30retw)
	Dat = dji30retw[, 1:15, drop = FALSE]
	
	uspec = ugarchspec(mean.model = list(armaOrder = c(2,0)), 
			variance.model = list(garchOrder = c(1,1), model = "gjrGARCH"), 
			distribution.model = "norm")
	spec1 = dccspec(uspec = multispec( replicate(15, uspec) ), 
			distribution = "mvt")
	
	# equivalent to out.sample = 2, roll = 2 (i.e. 2 rolling forecast from data in 
	# the out.sample and 1 forecast > data
	M.dcc = fmoments(spec1, Data = dji30retw[,1:15], n.ahead = 1, roll = 2, 
			solver = "solnp", fit.control = list(eval.se=FALSE), 
			cluster = cluster)
	
	spec2 = gogarchspec(mean.model = list(model = "AR", lag = 2), 
			variance.model = list(model = "gjrGARCH", garchOrder = c(1,1)), 
			distribution.model = c("mvnorm", "manig", "magh")[2], 
			ica = "fastica")
	M.gg = fmoments(spec2, Data = dji30retw[,1:15], n.ahead = 1, roll = 2, 
			solver = "solnp", cluster = cluster, gfun = "tanh", maxiter1=20000, 
			A.init = diag(15))
	
	# create a set of random weights
	w = matrix(rexp(1000*15, 2), 1000, 15)
	w = t(apply(w, 1, FUN = function(x) x/sum(x)))
	m.fun = function(x, M){ sum(x * M) }
	# fitted returns the conditional mean (analytic)
	m1dcc = fitted(M.dcc)
	m1gg = fitted(M.gg)
	
	M1.dcc = apply(w, 1, FUN = function(x) m.fun(x, m1dcc[1,]))
	M2.dcc = apply(w, 1, FUN = function(x) m.fun(x, m1dcc[2,]))
	M3.dcc = apply(w, 1, FUN = function(x) m.fun(x, m1dcc[3,]))
	
	M1.gg = apply(w, 1, FUN = function(x) m.fun(x, m1gg[1,]))
	M2.gg = apply(w, 1, FUN = function(x) m.fun(x, m1gg[2,]))
	M3.gg = apply(w, 1, FUN = function(x) m.fun(x, m1gg[3,]))
	
	# While they both have the same conditional mean dynamics (AR[2]), the DCC model
	# AR model is estimated jointly with GARCH whilst the GO-GARCH is estimated
	# in the first stage under a constant variance. DCC is therefore more efficient
	# and the two estimates are expected to be different.
	postscript("test4b-1.eps")
	par(mfrow=c(2,2))
	boxplot(cbind(M1.dcc, M1.gg), main = as.character(M.dcc@moments$index[1]))
	boxplot(cbind(M2.dcc, M2.gg), main = as.character(M.dcc@moments$index[2]))
	boxplot(cbind(M3.dcc, M3.gg), main = as.character(M.dcc@moments$index[3]))
	dev.off()
	
	s.fun = function(x, C){ sqrt(x %*% C %*% x) }
	m2dcc = rcov(M.dcc)
	m2gg = rcov(M.gg)
	S1.dcc = apply(w, 1, FUN = function(x) s.fun(x, m2dcc[,,1]))
	S2.dcc = apply(w, 1, FUN = function(x) s.fun(x, m2dcc[,,2]))
	S3.dcc = apply(w, 1, FUN = function(x) s.fun(x, m2dcc[,,3]))
	
	S1.gg = apply(w, 1, FUN = function(x) s.fun(x, m2gg[,,1]))
	S2.gg = apply(w, 1, FUN = function(x) s.fun(x, m2gg[,,2]))
	S3.gg = apply(w, 1, FUN = function(x) s.fun(x, m2gg[,,3]))
	
	postscript("test4b-2.eps")
	par(mfrow=c(2,2))
	boxplot(cbind(S1.dcc, S1.gg), main = as.character(M.dcc@moments$index[1]))
	boxplot(cbind(S2.dcc, S2.gg), main = as.character(M.dcc@moments$index[2]))
	boxplot(cbind(S3.dcc, S3.gg), main = as.character(M.dcc@moments$index[3]))
	dev.off()
	
	sk.fun = function(x, S, s){ (x %*% S %*% kronecker(x,x))/s^3 }
	m3gg = rcoskew(M.gg)
	Sk1.gg = apply(cbind(w, S1.gg), 1, FUN = function(x) sk.fun(x[1:15], m3gg[,,1], x[16]))
	Sk2.gg = apply(cbind(w, S2.gg), 1, FUN = function(x) sk.fun(x[1:15], m3gg[,,2], x[16]))
	Sk3.gg = apply(cbind(w, S3.gg), 1, FUN = function(x) sk.fun(x[1:15], m3gg[,,3], x[16]))
	
	m4gg = rcokurt(M.gg)
	ku.fun = function(x, S, s){ (x %*% S %*% kronecker(x, kronecker(x,x)))/s^4 }
	K1.gg = apply(cbind(w, S1.gg), 1, FUN = function(x) ku.fun(x[1:15], m4gg[,,1], x[16]))
	K2.gg = apply(cbind(w, S2.gg), 1, FUN = function(x) ku.fun(x[1:15], m4gg[,,2], x[16]))
	K3.gg = apply(cbind(w, S3.gg), 1, FUN = function(x) ku.fun(x[1:15], m4gg[,,3], x[16]))
	
	postscript("test4b-3.eps", width=12, height=8)
	par(mfrow=c(1,2))
	boxplot(cbind(Sk1.gg, Sk2.gg, Sk3.gg), main = "GO-GARCH(NIG) \nWeighted Skewness", cex.main=0.9)
	boxplot(cbind(K1.gg, K2.gg, K3.gg)-3, main = "GO-GARCH(NIG) \nWeighted Ex-Kurtosis", cex.main=0.9, ylim = c(0, 3))
	abline(h = M.dcc@moments$kurtosis-3, col = "tomato1")
	legend("topright", ("DCC-T (QML) Ex-Kurtosis"), col = 2, lty=2, bty="n", cex = 0.8)
	dev.off()
	
	toc = Sys.time()-tic
	cat("Elapsed:", toc, "\n")
	return(toc)
	
}
mcremene/changedRmgarch2 documentation built on Feb. 5, 2021, 12:46 a.m.