#' @title Dynamic fit index (DFI) cutoffs for continuous, non-normal one-factor CFA models with (possible) missing data
#'
#' @description This function generates DFI cutoffs for one-factor CFA models that treats items as continuous and non-normal with
#' possible missing data. This functions uses a modified Bollen-Stine bootstrap to accommodate non-normality and missingness rather
#' than simulating from a particular distribution. The default argument is a singular argument: a \code{\link{lavaan}} object from
#' the \code{\link{cfa}} function. The function can also accommodate manual entry of the model statement and
#' sample size (including threshold estimates). A primary difference in nnor DFI functions is that a dataset from which to bootstrap
#' must also be provided in the 'data' argument.
#'
#' The app-based version of this function can be found at \href{https://dynamicfit.app/}{dynamicfit.app}.
#'
#' @param model This can either be a \code{\link{lavaan}} object from the \code{\link{cfa}} function,
#' OR a model statement written in \code{\link{lavaan}} \code{\link{model.syntax}} with standardized loadings
#' @param data An empirical dataset to which a modified Bollen-Stine bootstrap will be applied to create hypothetical misspecified data
#' @param n If you entered a \code{\link{lavaan}} object for model, leave this blank.
#' Otherwise, enter your sample size (numeric).
#' @param plot Displays distributions of fit indices for each level of misspecification.This also includes plots to visualize how close the
#' distributions of the hypothetical data come to the original data.
#' @param manual If you entered a \code{\link{lavaan}} object, keep this set to FALSE.
#' If you manually entered standardized loadings and sample size, set this to TRUE.
#' @param reps The number of replications used in your simulation. This is set to 500 by default in both the
#' R package and the corresponding Shiny App.
#' @param estimator Which estimator to use within the simulations (enter in quotes). The default is MLR
#'
#' @import dplyr lavaan simstandard ggplot2 stringr
#' @importFrom purrr map map_dfr map2
#' @importFrom tidyr unite extract gather
#' @importFrom patchwork plot_layout plot_annotation wrap_plots
#' @importFrom semTools bsBootMiss
#'
#' @author Daniel McNeish & Melissa G Wolf
#'
#' Maintainer: Daniel McNeish <dmcneish@asu.edu>
#'
#' @rdname nnorOne
#'
#' @return Dynamic fit index (DFI) cutoffs for SRMR, RMSEA, and CFI.
#' @export
#'
#' @examples
#' #Example using a lavaan object as input (manual=FALSE)
#'
#' #one-factor model
#' m1<-"F1=~X5+ X6 + X7 + X8 + X9"
#'
#' #fit the model in lavaan, treating items are continuous
#' fit<-lavaan::cfa(m1, data=Example)
#'
#' \donttest{nnorOne(fit, data=Example)}
#'
#' #Manual entry example (manual=TRUE)
#'
#' #one-factor model with correlated factors
#' m1<-"F1=~X5+ X6 + X7 + X8 + X9"
#'
#' #fit the model, treating items are continuous
#' #lavaan is used here to shown where estimates come from
#' #but manual entry supports standardized estimates from models fit in any software
#'
#' fit<-lavaan::cfa(m1, data=Example)
#' lavaan::standardizedsolution(fit)
#'
#' manual_model <-"F1=~.517*X5 + .549*X6 + .679*X7 + .694*X8 + .203*X9"
#'
#' \donttest{nnorOne(model=manual_model,data=Example,n=500,manual=TRUE)}
#'
nnorOne <- function(model,data,n=NULL,plot=FALSE,manual=FALSE,estimator="MLR",reps=500){
#If manual, expect manual (a la Shiny app)
if(manual){
n <- n
model9 <- model
}else{
#Use this to rewrite error message for when someone forgot to use manual=TRUE
#But entered in model statement and sample size
#This is hacky but works, although traceback might confuse people
#https://community.rstudio.com/t/create-custom-error-messages/39058/4
tryCatch(cfa_n(model),
error=function(err){
if (grepl("trying to get slot", err)) {
stop("dynamic Error: Did you forget to use manual=TRUE?")
}
})
#Error for when someone enters an object that doesn't exist, or a non-lavaan object
tryCatch(cfa_n(model),
error=function(err2){
if (grepl("Error in base::unlist", err2)){
stop("dynamic Error: Did you enter a lavaan object? Confirm that it is a lavaan object using class(). If you do not have a lavaan object, enter the arguments manually and select manual=TRUE.")
}
})
#Use these functions to convert to manual (input is a lavaan object)
#Probably what we should expect for people using R
#need 'n' first because otherwise model will overwrite
n <- cfa_n(model)
model9 <- cfa_lavmod(model)
}
if (unstandardized(model9)>0){
stop("dynamic Error: One of your loadings or correlations has an absolute value of 1 or above (an impossible value). Please use standardized loadings. If all of your loadings are under 1, try looking for a missing decimal somewhere in your model statement.")
}
if (number_factor(model9)>1){
stop("dynamic Error: You entered a multi-factor model. Use nnorHB instead.")
}
if (defre(model9,n)==0){
stop("dynamic Error: It is impossible to add misspecifications to a just identified model.")
}
if ( nrow(one_num(model9)) < (number_factor(model9)-1)){
stop("dynamic Error: There are not enough free items to produce all misspecification levels.")
}
#Create list to store outputs (table and plot)
res <- list()
#Output fit indices if someone used manual=F
#Will ignore in print statement if manual=T
#Exclamation point is how we indicate if manual = T (because default is F)
if(!manual){
if (model@Options$test=="satorra.bentler" |model@Options$test=="yuan.bentler.mplus" | model@Options$test=="yuan.bentler.mplus"){
fitted <- round(lavaan::fitmeasures(model,c("chisq.scaled","df","pvalue.scaled","srmr","rmsea.robust","cfi.robust")),3)
} else if (model@Options$test=="scaled.shifted" | model@Options$test=="mean.var.adusted"){
fitted <- round(lavaan::fitmeasures(model,c("chisq.scaled","df","pvalue.scaled","srmr","rmsea.scaled","cfi.scaled")),3)
} else if(model@Options$test=="standard" ){
fitted <- round(lavaan::fitmeasures(model,c("chisq","df","pvalue","srmr","rmsea","cfi")),3)}
fitted_m <- as.matrix(fitted)
fitted_t <- t(fitted_m)
fitted_t <- as.data.frame(fitted_t)
colnames(fitted_t) <- c("Chi-Square"," df","p-value"," SRMR"," RMSEA"," CFI")
rownames(fitted_t) <- c("")
res$fit <- fitted_t
}
#Run simulation
tryCatch(one_df_nnor(model9,data,n,estimator, reps),
error=function(err3){
if (grepl("is missing, with no default", err3)){
stop("dynamic Error: Did you forget to include a dataset? nnor functions in dynamic use bootstrapping instead of simulation to ensure
that distributions and missing data patterns match the original data. The nnorOne function requires a dataset an input.")
}
})
results <- one_df_nnor(model9,data,n,estimator, reps)
#Save the data and make it exportable
res$data <- fit_data(results)
#For each list element (misspecification) compute the cutoffs
misspec_sum <- purrr::map(results,~dplyr::reframe(.,SRMR_M=stats::quantile(SRMR_M, c(seq(0.05,1,0.01))),
RMSEA_M=stats::quantile(RMSEA_M, c(seq(0.05,1,0.01))),
CFI_M=stats::quantile(CFI_M, c(seq(0.95,0,-0.01)))))
#For the true model, compute the cutoffs (these will all be the same - just need in list form)
true_sum <- purrr::map(results,~dplyr::reframe(.,SRMR_T=stats::quantile(SRMR_T, c(.95)),
RMSEA_T=stats::quantile(RMSEA_T, c(.95)),
CFI_T=stats::quantile(CFI_T, c(.05))))
fit<-list()
S<-list()
R<-list()
C<-list()
final<-list()
for (i in 1:length(misspec_sum))
{
fit[[i]]<-cbind(misspec_sum[[i]], true_sum[[i]])
fit[[i]]$Power<-seq(.95, 0.0, -.01)
fit[[i]]$S<-ifelse(fit[[i]]$SRMR_M >= fit[[i]]$SRMR_T, 1, 0)
fit[[i]]$R<-ifelse(fit[[i]]$RMSEA_M >= fit[[i]]$RMSEA_T, 1, 0)
fit[[i]]$C<-ifelse(fit[[i]]$CFI_M <= fit[[i]]$CFI_T, 1, 0)
S[[i]]<-subset(fit[[i]], subset=(!duplicated(fit[[i]][('S')])|fit[[i]][('Power')]==0), select=c("SRMR_M","Power","S")) %>% filter(S==1|Power==0)
R[[i]]<-subset(fit[[i]], subset=(!duplicated(fit[[i]][('R')])|fit[[i]][('Power')]==0), select=c("RMSEA_M","Power","R")) %>% filter(R==1|Power==0)
C[[i]]<-subset(fit[[i]], subset=(!duplicated(fit[[i]][('C')])|fit[[i]][('Power')]==0), select=c("CFI_M","Power","C")) %>% filter(C==1|Power==0)
colnames(S[[i]])<-c("SRMR","PowerS")
colnames(R[[i]])<-c("RMSEA","PowerR")
colnames(C[[i]])<-c("CFI","PowerC")
final[[i]]<-cbind(S[[i]][1,],R[[i]][1,],C[[i]][1,])
final[[i]]<-final[[i]][c("SRMR","PowerS","RMSEA","PowerR","CFI","PowerC")]
}
L0<-data.frame(cbind(true_sum[[1]]$SRMR_T,.95,true_sum[[1]]$RMSEA_T,0.95,true_sum[[1]]$CFI_T,0.95))%>%
`colnames<-`(c("SRMR","PowerS","RMSEA","PowerR","CFI","PowerC"))
if(length(misspec_sum)==3) {
Fit<-round(rbind(L0,final[[1]],final[[2]],final[[3]]),3)
}
if(length(misspec_sum)==2) {
Fit<-round(rbind(L0,final[[1]],final[[2]]),3)
}
if(length(misspec_sum)==1) {
Fit<-round(rbind(L0,final[[1]]),3)
}
fit1<-unlist(Fit)%>% matrix(nrow=(length(misspec_sum)+1), ncol=6) %>%
`colnames<-`(c("SRMR","PowerS","RMSEA","PowerR","CFI","PowerC"))
PS<-paste(round(100*fit1[,2], 2), "%", sep="")
PR<-paste(round(100*fit1[,4], 2), "%", sep="")
PC<-paste(round(100*fit1[,6], 2), "%", sep="")
for (j in 2:(length(misspec_sum)+1)) {
if(fit1[j,2]<.50){fit1[j,1]<-"NONE"}
if(fit1[j,4]<.50){fit1[j,3]<-"NONE"}
if(fit1[j,6]<.50){fit1[j,5]<-"NONE"}
}
fit1[,2]<-PS
fit1[,4]<-PR
fit1[,6]<-PC
pp<-c(rep("--",(length(misspec_sum)+1)))
pp0<-c(rep("",(length(misspec_sum)+1)))
SS<-noquote(matrix(rbind(fit1[,1],fit1[,2],pp0),ncol=1))
RR<-noquote(matrix(rbind(fit1[,3],fit1[,4],pp0),ncol=1))
CC<-noquote(matrix(rbind(fit1[,5],fit1[,6],pp0),ncol=1))
Table<-noquote(cbind(SS,RR,CC) %>%
`colnames<-`(c("SRMR","RMSEA","CFI")))
if(length(misspec_sum)==3) {
rownames(Table)<-c("Level-0","Specificity", "","Level-1", "Sensitivity","", "Level-2", "Sensitivity","", "Level-3", "Sensitivity","")
}
if(length(misspec_sum)==2) {
rownames(Table)<-c("Level-0","Specificity", "","Level-1", "Sensitivity","", "Level-2", "Sensitivity","")
}
if(length(misspec_sum)==1) {
rownames(Table)<-c("Level-0","Specificity", "","Level-1", "Sensitivity","")
}
Table<-Table[1:(nrow(Table)-1),]
#Put into list
res$cutoffs <- Table
#If user selects plot = T
if(plot){
#For each list element (misspecification) compute the cutoffs
#misspec_sum <- purrr::map(results,~dplyr::summarise(.,SRMR_M=stats::quantile(SRMR_M, c(.05,.1)),
# RMSEA_M=stats::quantile(RMSEA_M, c(.05,.1)),
# CFI_M=stats::quantile(CFI_M, c(.95,.9))))
#For the true model, compute the cutoffs (these will all be the same - just need in list form)
# true_sum <- purrr::map(results,~dplyr::summarise(.,SRMR_T=stats::quantile(SRMR_T, c(.95,.9)),
# RMSEA_T=stats::quantile(RMSEA_T, c(.95,.9)),
# CFI_T=stats::quantile(CFI_T, c(.05,.1))))
#Select just those variables and rename columns to be the same
Misspec_dat <- purrr::map(results,~dplyr::select(.,SRMR_M:Type_M) %>%
`colnames<-`(c("SRMR","RMSEA","CFI","Model")))
#Select just those variables and rename columns to be the same
True_dat <- purrr::map(results,~dplyr::select(.,SRMR_T:Type_T) %>%
`colnames<-`(c("SRMR","RMSEA","CFI","Model")))
#For each element in the list, bind the misspecified cutoffs to the true cutoffs
#rbind doesn't work well with lists (needs do.call statement)
plot <- base::lapply(base::seq(base::length(Misspec_dat)),function(x) dplyr::bind_rows(Misspec_dat[x],True_dat[x]))
#Plot SRMR. Need map2 and data=.x (can't remember why).
SRMR_plot <- purrr::map2(plot,final,~ggplot(data=.x,aes(x=SRMR,fill=Model))+
geom_histogram(position="identity",
alpha=.5, bins=30)+
scale_fill_manual(values=c("#E9798C","#66C2F5"))+
geom_vline(aes(xintercept=.y$SRMR[1],
linetype="final$SRMR[1]",color="final$SRMR[1]"),
size=.6)+
geom_vline(aes(xintercept=.08,
linetype=".08",color=".08"),
size=.75)+
scale_color_manual(name="Cutoff Values",
labels=c("Hu & Benter Cutoff","Dynamic Cutoff"),
values=c("final$SRMR[1]"="black",
".08"="black"))+
scale_linetype_manual(name="Cutoff Values",
labels=c("Hu & Benter Cutoff","Dynamic Cutoff"),
values=c("final$SRMR[1]"="longdash",
".08"="dotted"))+
theme(axis.title.y = element_blank(),
axis.text.y = element_blank(),
axis.ticks.y = element_blank(),
panel.background = element_blank(),
axis.line = element_line(color="black"),
legend.position = "none",
legend.title = element_blank(),
legend.box = "vertical"))
#Plot RMSEA. Need map2 and data=.x (can't remember why).
RMSEA_plot <- purrr::map2(plot,final,~ggplot(data=.x,aes(x=RMSEA,fill=Model))+
geom_histogram(position="identity",
alpha=.5, bins=30)+
scale_fill_manual(values=c("#E9798C","#66C2F5"))+
geom_vline(aes(xintercept=.y$RMSEA[1],
linetype="final$RMSEA[1]",color="final$RMSEA[1]"),
size=.6)+
geom_vline(aes(xintercept=.06,
linetype=".06",color=".06"),
size=.75)+
scale_color_manual(name="Cutoff Values",
labels=c("Hu & Benter Cutoff","Dynamic Cutoff"),
values=c("final$RMSEA[1]"="black",
".06"="black"))+
scale_linetype_manual(name="Cutoff Values",
labels=c("Hu & Benter Cutoff","Dynamic Cutoff"),
values=c("final$RMSEA[1]"="longdash",
".06"="dotted"))+
theme(axis.title.y = element_blank(),
axis.text.y = element_blank(),
axis.ticks.y = element_blank(),
panel.background = element_blank(),
axis.line = element_line(color="black"),
legend.position = "none",
legend.title = element_blank(),
legend.box = "vertical"))
#Plot CFI. Need map2 and data=.x (can't remember why).
CFI_plot <- purrr::map2(plot,final,~ggplot(data=.x,aes(x=CFI,fill=Model))+
geom_histogram(position="identity",
alpha=.5, bins=30)+
scale_fill_manual(values=c("#E9798C","#66C2F5"))+
geom_vline(aes(xintercept=.y$CFI[1],
linetype="final$CFI[1]",color="final$CFI[1]"),
size=.6)+
geom_vline(aes(xintercept=.95,
linetype=".95",color=".95"),
size=.75)+
scale_color_manual(name="Cutoff Values",
labels=c("Hu & Benter Cutoff","Dynamic Cutoff"),
values=c("final$CFI[1]"="black",
".95"="black"))+
scale_linetype_manual(name="Cutoff Values",
labels=c("Hu & Benter Cutoff","Dynamic Cutoff"),
values=c("final$CFI[1]"="longdash",
".95"="dotted"))+
theme(axis.title.y = element_blank(),
axis.text.y = element_blank(),
axis.ticks.y = element_blank(),
panel.background = element_blank(),
axis.line = element_line(color="black"),
legend.position = "none",
legend.title = element_blank(),
legend.box = "vertical"))
#Create a list with the plots combined for each severity level
plots_combo <- base::lapply(base::seq(base::length(plot)),function(x) c(SRMR_plot[x],RMSEA_plot[x],CFI_plot[x]))
#Add a collective legend and title with the level indicator
plots <- base::lapply(base::seq(base::length(plots_combo)), function(x) patchwork::wrap_plots(plots_combo[[x]])+
plot_layout(guides = "collect")+
plot_annotation(title=paste("Level", x))
& theme(legend.position = 'bottom'))
#Put into list
res$plots <- plots
dataMiss<-data_nnor(model9, data, n, reps)
jj<-as.data.frame(dataMiss$data_t)[,names(dataMiss$data1)]
aa<-tidyr::gather(jj)
bb<-tidyr::gather(dataMiss$data1)
aa$model<-c("Bootstrapped Data")
bb$model<-c("Original Data")
cc<-rbind(aa,bb)
dist<- ggplot()+ geom_histogram(data=cc,aes(x=value, y=..density.., fill=model), bins=(max(bb$value, na.rm=T)-min(bb$value, na.rm=T)),alpha=.3,position="identity") + facet_wrap(~key, scales = 'free_x')+
scale_colour_manual(values=c("#E9798C","#66C2F5")) +
theme(axis.title.y = element_blank(), axis.title.x=element_blank(),
axis.text.y = element_blank(),
axis.ticks.y = element_blank(),
panel.background = element_blank(),
axis.line = element_line(color="black"),legend.title=element_blank())
res$dist_plot <- dist
}
#Create object (necessary for subsequent print statement)
class(res) <- 'nnorOne'
return(res)
}
#' @method print nnorOne
#' @param x nnorOne object
#' @param ... other print parameters
#' @rdname nnorOne
#' @export
#Print suppression/organization statement for list
#Needs same name as class, not function name
#Need to add ... param or will get error message in CMD check
print.nnorOne <- function(x,...){
#Automatically return fit cutoffs
base::cat("Your DFI cutoffs: \n")
base::print(x$cutoffs)
#Only print fit indices from lavaan object if someone submits a lavaan object
if(!is.null(x$fit)){
base::cat("\n")
base::cat("Empirical fit indices: \n")
base::print(x$fit)
}
base::cat("\n Notes:
-'Sensitivity' is % of hypothetically misspecified models correctly identified by cutoff in DFI simulation
-Cutoffs with 95% sensitivity are reported when possible
-If sensitivity is <50%, cutoffs will be supressed \n")
if(!is.null(x$plots)){
base::cat("\n The distributions for each level are in the Plots tab \n")
base::print(x$plots)
}
#Hides this function
base::invisible()
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.