estimate.hyperparameters: estimate.hyperparameters

estimate.hyperparametersR Documentation

estimate.hyperparameters

Description

Hyperparameter estimation.

Usage

estimate.hyperparameters(
  sets = NULL,
  probe.parameters = list(alpha = 2, beta = 1),
  batches,
  cdf = NULL,
  bg.method = "rma",
  epsilon = 0.01,
  load.batches = FALSE,
  save.hyperparameter.batches = FALSE,
  mc.cores = 1,
  verbose = TRUE,
  normalization.method = "quantiles",
  save.batches.dir = ".",
  unique.run.identifier = NULL,
  set.inds = set.inds
)

Arguments

sets

Probesets to handle. All probesets by default.

probe.parameters

User-defined priors. May also include quantile.basis

batches

Data batches for online learning

cdf

CDF probeset definition file

bg.method

Background correction method

epsilon

Convergence parameter

load.batches

Logical. Load preprocessed data whose identifiers are picked from names(batches). Assuming that the same batch list (batches) was used to create the files in online.quantiles function.

save.hyperparameter.batches

Save hyperparameters for each batch into files using the identifiers with batch name with -hyper.RData suffix.

mc.cores

Number of cores for parallel computation

verbose

Print progress information

normalization.method

Normalization method

save.batches.dir

Specify the output directory for temporary batch saves.

unique.run.identifier

Define identifier for this run for naming the temporary batch files. By default, a random id is generated.

set.inds

Probeset indices

Value

alpha: Hyperparameter alpha (same for all probesets); betas: Hyperparameter beta (probe-specific); variances: Probe-specific variances (beta/alpha)

Author(s)

Leo Lahti leo.lahti@iki.fi

References

See citation("RPA")

Examples

# 

microbiome/RPA documentation built on April 9, 2023, 10:59 a.m.