| summarize.batches | R Documentation | 
Summarize batches.
summarize.batches(
  sets = NULL,
  probe.parameters = list(),
  batches,
  load.batches = FALSE,
  mc.cores = 1,
  cdf = NULL,
  bg.method = "rma",
  normalization.method = "quantiles",
  verbose = TRUE,
  save.batches.dir = ".",
  unique.run.identifier = NULL,
  save.batches = FALSE,
  set.inds,
  speedup = FALSE,
  summarize.with.affinities = FALSE
)
| sets | Probesets to summarize | 
| probe.parameters | Optional probe parameters, including priors. | 
| batches | Data batches for online learning | 
| load.batches | Logical. Load precalculated data for the batches. | 
| mc.cores | Number of cores for parallel computation | 
| cdf | CDF for alternative probeset definitions | 
| bg.method | Background correction method | 
| normalization.method | Normalization method | 
| verbose | Print progress information | 
| save.batches.dir | Specify the output directory for temporary batch saves. | 
| unique.run.identifier | Define identifier for this run for naming the temporary batch files. By default, a random id is generated. | 
| save.batches | Save batches? | 
| set.inds | Probeset indices | 
| speedup | Speed up calculations with approximations. | 
| summarize.with.affinities | Use affinity estimates in probe summarization step. Default: FALSE. | 
Sweeps through the batches. Summarizes the probesets within each batch based on the precalculated model parameter point estimates.
Expression matrix: probesets x samples.
Leo Lahti leo.lahti@iki.fi
See citation("RPA")
# 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.