.kplsr <- function(
Xr, Yr, Xu, Yu = NULL,
ncomp,
kern = kpol,
weights = NULL,
...
) {
Xr <- .matrix(Xr)
zdim <- dim(Xr)
n <- zdim[1]
p <- zdim[2]
Xu <- .matrix(Xu)
m <- dim(Xu)[1]
rownam.Xu <- row.names(Xu)
if(is.null(weights))
weights <- rep(1 / n, n)
else
weights <- weights / sum(weights)
Yr <- .matrix(Yr, row = FALSE, prefix.colnam = "y")
q <- dim(Yr)[2]
colnam.Y <- colnames(Yr)
ymeans <- .xmean(Yr, weights)
if(is.null(Yu))
Yu <- matrix(nrow = m, ncol = q)
else {
if(q == 1)
row <- FALSE
else
row <- TRUE
Yu <- .matrix(Yu, row = row)
}
Ku <- kern(Xu, Xr, ...)
tK <- t(kern(Xr, ...))
Kuc <- t(t(Ku - colSums(weights * t(Ku))) - colSums(weights * tK)) +
sum(weights * t(weights * tK))
fm <- kpls_nipals(Xr, Yr, ncomp, kern, weights, ...)
Tu <- Kuc %*% fm$R
beta <- t(fm$C)
Ymeans <- matrix(rep(ymeans, m), nrow = m, byrow = TRUE)
r <- fit <- y <- array(dim = c(m, ncomp + 1, q))
y[, 1, ] <- Yu
fit[, 1, ] <- Ymeans
for(a in seq_len(ncomp)) {
y[, a + 1, ] <- Yu
fit[, a + 1, ] <- Ymeans + Tu[, seq_len(a), drop = FALSE] %*% beta[seq_len(a), , drop = FALSE]
}
y <- matrix(c(y), nrow = m * (ncomp + 1), ncol = q, byrow = FALSE)
fit <- matrix(c(fit), nrow = m * (ncomp + 1), ncol = q, byrow = FALSE)
r <- y - fit
dat <- data.frame(
ncomp = sort(rep(seq(0, ncomp), m)),
rownum = rep(seq_len(m), ncomp + 1),
rownam = rep(rownam.Xu, ncomp + 1)
)
y <- cbind(dat, y)
fit <- cbind(dat, fit)
r <- cbind(dat, r)
zq <- ncol(y)
u <- seq(zq - q + 1, zq)
names(r)[u] <- names(fit)[u] <- names(y)[u] <- colnam.Y
list(y = y, fit = fit, r = r,
Tr = fm$T, Tu = Tu, C = fm$C,
weights = fm$weights, T.ortho = fm$T.ortho)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.