inst/tinytest/helper_mutators.R

library("data.table")

# mut: mutator to check
# mutator_name: name to print in info
# is_primed: whether the mutator is already primed. if so, the expectation that unprimed mutator gives an error will not be checked.
#
# Note for testing clones:
# When testing a cloned mutator that was cloned from a primed mutator:
# 1. The clone preserves the primed state (clone$is_primed will be TRUE)
# 2. When calling expect_mutator on a clone, set is_primed=TRUE
# 3. Alternatively, test clone operation directly without using expect_mutator:
#    Example: clone_result = clone$operate(data)
#             expect_equal(clone_result, expected_result)
#
# Testing cloned operators without setting is_primed=TRUE may result in
# failures because expect_mutator tests unprimed behavior by default.
expect_mutator = function(mut, mutator_name, is_primed = FALSE) {

  expect_r6(mut, "Mutator", info = mutator_name)

  # names may not be param classes directly, so add a period here
  p = ps(ParamLgl. = p_lgl(), ParamDbl. = p_dbl(0, 1), ParamInt. = p_int(0, 1), ParamFct. = p_fct(c("a", "b", "c")))
  pbig = ps(ParamLgl. = p_lgl(), ParamDbl. = p_dbl(0, 1), ParamInt. = p_int(0, 1), ParamFct. = p_fct(c("a", "b", "c")),
    ParamLgl.1 = p_lgl(), ParamDbl.1 = p_dbl(0, 1), ParamInt.1 = p_int(0, 1), ParamFct.1 = p_fct(c("a", "b", "c")))

  p_forbidden = p$clone(deep = TRUE)$subset(ids = setdiff(p$ids(), paste0(mut$param_classes, ".")))
  if (length(p_forbidden$ids())) {
    expect_error(mut$prime(p_forbidden), "Must be a subset of", info = mutator_name)
    # pvals_forbidden = generate_design_random(p_forbidden, 1)$data
  }

  p_allowed = p$clone(deep = TRUE)$subset(ids = paste0(mut$param_classes, "."))
  pvals_allowed = generate_design_random(p_allowed, 3)$data

  if (!is_primed) {
    expect_error(mut$operate(pvals_allowed), "must be primed first", info = mutator_name)
  }

  pbig_allowed = pbig$clone(deep = TRUE)$subset(ids = c(paste0(mut$param_classes, "."), paste0(mut$param_classes, ".1")))
  pbigvals_allowed = generate_design_random(pbig_allowed, 3)$data

  mut$prime(pbig_allowed)
  expect_equal(mut$primed_ps, pbig_allowed)
  expect_error(mut$operate(pvals_allowed), "[mM]ust be a (permutation of set|set equal to)")

  mut$prime(p_allowed)
  expect_error(mut$operate(pbigvals_allowed), "Parameter .*\\.1.*not available")

  mutated = mut$operate(as.data.frame(pvals_allowed))
  expect_data_frame(mutated, nrows = nrow(pvals_allowed), ncols = ncol(pvals_allowed), any.missing = FALSE, info = mutator_name)
  expect_true(identical(class(mutated), "data.frame"))  # No data.table output when input is data.frame

  test_alloweds = function(data, pp) {
    mut$prime(pp)
    mutated = mut$operate(data)
    expect_true(pp$test_dt(mutated), info = mutator_name)
    expect_data_table(mutated, nrows = nrow(data), ncols = ncol(data), any.missing = FALSE, info = mutator_name)
  }

  test_alloweds(pvals_allowed, p_allowed)
  test_alloweds(rev(pvals_allowed), p_allowed)
  test_alloweds(pvals_allowed[1], p_allowed)

  p_allowed_one = p_allowed$clone(deep = TRUE)$subset(p_allowed$ids()[[1]])

  test_alloweds(pvals_allowed[, 1, with = FALSE], p_allowed_one)
  test_alloweds(pvals_allowed[1, 1, with = FALSE], p_allowed_one)

  if (miesmuschel:::paradox_s3) {
    p_allowed_multicol = ParamSet$new(sapply(letters[1:3], function(x) {
      p_allowed$get_domain(p_allowed$ids()[[1]])
    }, simplify = FALSE))

  } else {
    p_allowed_multicol = ParamSet$new(lapply(letters[1:3], function(x) {
      par = p_allowed$params[[1]]$clone(deep = TRUE)
      par$id = x
      par
    }))
  }
  pvals_allowed_multicol = generate_design_random(p_allowed_multicol, 3)$data

  expect_error(mut$operate(pvals_allowed_multicol), "Parameter 'a' not available", info = mutator_name)

  test_alloweds(pvals_allowed_multicol, p_allowed_multicol)
  test_alloweds(pvals_allowed_multicol[1], p_allowed_multicol)

  expect_true(mut$endomorphism)


}

MutatorDebug = R6::R6Class("MutatorDebug",
  inherit = Mutator,
  public = list(
    handler = NULL,
    initialize = function(handler, param_classes = c("ParamLgl", "ParamInt", "ParamDbl", "ParamFct"), param_set = ps()) {
      self$handler = assert_function(handler, args = c("n", "v", "p"), ordered = TRUE)
      super$initialize(param_classes = param_classes, param_set = param_set)
    }
  ),
  private = list(
    .mutate = function(values, context) {
      as.data.table(sapply(names(values), function(n) self$handler(n, values[[n]], self$param_set$values), simplify = FALSE))
    }
  )
)
mlr-org/miesmuschel documentation built on April 5, 2025, 6:08 p.m.