# script to test generic drift and diffusion functions on cholSD scale.
# calculations are checked against msde C++ code
# inherits: param.names, data.names
# drift.fun, diff.fun
# model (sde.model with default prior)
ndims <- model$ndims
nparams <- model$nparams
source("msde-testfunctions.R")
source("smc-testfunctions.R")
#--- test drift and diffusion --------------------------------------------------
nreps <- 10
cases <- expand.grid(single.x = c(TRUE, FALSE), single.theta = c(TRUE, FALSE))
ncases <- nrow(cases)
# drift
test_that("drift.R == drift.cpp", {
mxd <- matrix(NA, ncases, 2)
for(ii in 1:ncases) {
sx <- cases$single.x[ii]
st <- cases$single.theta[ii]
init <- input.init(nreps, sx, st, randx, randt)
dr <- sde.drift(model = model, x = init$X, theta = init$Theta)
dr.R <- drift.fun(x = init$X.R, theta = init$Theta.R)
if(sx && st) dr.R <- dr.R[1,]
mxd[ii,] <- max.diff(dr, dr.R)
expect_equal(mxd[ii,], c(0,0))
}
})
# diffusion
test_that("diff.R == diff.cpp", {
mxd <- matrix(NA, ncases, 2)
for(ii in 1:ncases) {
sx <- cases$single.x[ii]
st <- cases$single.theta[ii]
init <- input.init(nreps, sx, st, randx, randt)
df <- sde.diff(model = model, x = init$X, theta = init$Theta)
df.R <- diff.fun(x = init$X.R, theta = init$Theta.R)
if(sx && st) df.R <- df.R[1,]
mxd[ii,] <- max.diff(df, df.R)
expect_equal(mxd[ii,], c(0, 0))
}
})
#--- test simulation -----------------------------------------------------------
SEED <- sample(1000, 1)
dT <- runif(1)
nreps <- 10
nobs <- 8
burn <- 3
cases <- expand.grid(single.x = c(TRUE, FALSE), single.theta = c(TRUE, FALSE),
burn = c(0, burn), nreps = c(1, nreps), rr = c(1, 2))
ncases <- nrow(cases)
test_that("sim.R == sim.cpp", {
mxd <- matrix(NA, ncases, 2)
for(ii in 1:ncases) {
sx <- cases$single.x[ii]
st <- cases$single.theta[ii]
burn <- cases$burn[ii]
nreps <- cases$nreps[ii]
rr <- cases$rr[ii]
init <- input.init(nreps, sx, st, randx, randt)
set.seed(seed = SEED)
sim <- sde.sim(model = model, x0 = init$X, theta = init$Theta,
dt = dT, dt.sim = dT/rr, nobs = nobs,
burn = burn, nreps = nreps, verbose = FALSE)$data
sim.R <- array(NA, dim = c(nobs, ndims, nreps))
set.seed(seed = SEED)
for(jj in 1:nreps) {
sim.R[,,jj] <- sim.fun(nobs = nobs+burn, dt = dT, rr = rr,
x0 = init$X.R[jj,],
theta = init$Theta.R[jj,],
dr = drift.fun, df = diff.fun,
validx = validx)[burn+1:nobs,]
}
mxd[ii,] <- max.diff(sim, drop(sim.R))
expect_equal(mxd[ii,], c(0, 0))
}
})
#--- test log-likelihood -------------------------------------------------------
cases <- expand.grid(single.x = c(TRUE, FALSE), single.theta = c(TRUE, FALSE))
ncases <- nrow(cases)
test_that("ll.R == ll.cpp", {
mxd <- matrix(NA, ncases, 2)
for(ii in 1:ncases) {
dT <- runif(1)
nobs <- sample(5:20, 1)
nreps <- sample(10:20, 1)
sx <- cases$single.x[ii]
st <- cases$single.theta[ii]
init <- input.init(nreps = c(nobs, nreps), sx, st, randx, randt)
ll <- sde.loglik(model = model, x = init$X, theta = init$Theta, dt = dT)
ll.R <- rep(NA, nreps)
for(jj in 1:nreps) {
ll.R[jj] <- loglik.fun(x = init$X.R[,,jj], theta = init$Theta.R[jj,],
dt = dT, dr = drift.fun, df = diff.fun)
}
if(sx && st) {
ll.R <- ll.R[1]
}
mxd[ii,] <- max.diff(ll, ll.R)
expect_equal(mxd[ii,], c(0, 0), tolerance = 1e-6, scale = 1)
}
})
#--- test default prior --------------------------------------------------------
nreps <- 10
cases <- expand.grid(single.x = c(TRUE, FALSE), single.theta = c(TRUE, FALSE),
ntheta = 0:nparams, nx = 0:ndims)
ncases <- nrow(cases)
test_that("lpi.R == lpi.cpp", {
mxd <- matrix(NA, ncases, 2)
for(ii in 1:ncases) {
sx <- cases$single.x[ii]
st <- cases$single.theta[ii]
init <- input.init(nreps = nreps, sx = sx, st = st, randx ,randt)
ntheta <- cases$ntheta[ii]
nx <- cases$nx[ii]
nrv <- sum(ntheta, nx)
if(nrv > 0) {
hnames <- NULL
if(ntheta > 0) hnames <- c(hnames, sample(model$param.names, ntheta))
if(nx > 0) hnames <- c(hnames, sample(model$data.names, nx))
hnames <- sample(hnames)
mu <- rnorm(nrv)
names(mu) <- hnames
Sigma <- crossprod(matrix(rnorm(nrv^2),nrv,nrv))
dimnames(Sigma) <- list(hnames, hnames)
lpi <- sde.prior(model = model, theta = init$Theta, x = init$X,
hyper = list(mu = mu, Sigma = Sigma))
lpi.R <- rep(NA, nreps)
for(jj in 1:nreps) {
xx <- c(init$Theta.R[jj,], init$X.R[jj,])
lpi.R[jj] <- lmvn(x = xx[hnames], mean = mu[hnames],
cholsd = chol(Sigma)[hnames,hnames])
}
} else {
lpi <- sde.prior(model = model, theta = init$Theta, x = init$X,
hyper = NULL)
lpi.R <- rep(0, nreps)
}
if(sx && st) lpi.R <- lpi.R[1]
mxd[ii,] <- max.diff(lpi, lpi.R)
expect_equal(mxd[ii,2], 0)
}
})
#--- test particle filter ------------------------------------------------------
ntest <- 10
test_that("pf.R == pf.cpp", {
mxd <- matrix(NA, ntest, 4)
for(ii in 1:ntest) {
# setup
nObs <- sample(50:100,1) # number of observations
nPart <- sample(10:50,1) # number of particles
nDims <- ndims # number of dimensions
# too large dT will cause testing failure in lotvol model, so we let dT ~ U(0, .2)
dT <- runif(1, min = 0, max = 0.2)
mm <- 1 # sample(1:2, 1)
history <- as.logical(rbinom(1,1,.5))
init <- input.init(nreps = 1, sx = TRUE, st = TRUE, randx ,randt)
msim <- sde.sim(model, x0 = init$X, theta = init$Theta,
nobs = nObs, dt = dT, dt.sim = dT)
# initialization
# m = 1 implies no missing data time points between two observations
minit <- sde.init(model, x = msim$data, dt = dT,
theta = init$Theta,
nvar.obs = sample(nDims, nObs, replace = TRUE), m = mm)
# normal draws
Z <- matrix(rnorm(nPart*nDims*(nObs-1)), nObs-1, nPart*nDims)
# pf in R
pf.R <- pf.fun(minit, dr = drift.fun, df = diff.fun, Z = Z,
history = history)
# pf in C++ (for debugging, disable the resampling)
# Z input for sde.pf should be a 3-d array of dimensions (nObs - 1) x nDims x nPart
Z <- array(c(Z), c(nObs-1, nDims, nPart))
pf <- sde.pf(model = model, init = minit, npart = nPart,
resample = "multi", threshold = -1,
Z = Z, history = history)
# comparison
# if history == TRUE, we need to convert pf$data to a comparable matrix
if(history == TRUE) {
# convert the dims of pf$data from nPart x nDims x nObs to nDims x nPart x nObs
pf$data <- aperm(pf$data, perm = c(2,1,3))
# then convert it to a matrix comparable with the result given by pf.R
pf$data <- matrix(pf$data, nrow = nDims*nPart, ncol = nObs)
pf$data <- t(pf$data)
} else {
# if history == FALSE, we need to convert pf$data to 1 x nDims*nPart matrix
pf$data <- matrix(t(pf$data), nrow = 1)
}
mxd[ii,] <- c(max.diff(pf$data, pf.R$data), max.diff(pf$lwgt, pf.R$lwgt))
expect_equal(mxd[ii,], rep(0, 4), tolerance = 1e-6, scale = 1)
}
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.