# package set up
library(globallmicmeffs)
date_0 <- "2020-07-04"
reports <- reports_4parameter_day(date_0)
get <- vector("list", nrow(reports))
brt <- get_brt_predictions(date_0)
for(i in seq_along(get)) {
message(i)
out <- readRDS(file.path(here::here(),
"analysis/data/raw_data/server_results/archive/lmic_reports_google_pmcmc/",
(reports$id[i]),"grid_out.rds"))
df <- out$replicate_parameters
if(nrow(brt[[reports$country[i]]])>0) {
df$Rt0 <- vapply(seq_along(df$start_date),
function(x){
out$pmcmc_results$inputs$Rt_func(
brt[[reports$country[i]]]$C[match(df$start_date[x], brt[[reports$country[i]]]$date)],
df$R0[x],
Meff = df$Meff[x]
)}, numeric(1))
df$Rt_now <- vapply(seq_along(df$start_date),
function(x){
out$pmcmc_results$inputs$Rt_func(
brt[[reports$country[i]]]$C[match(as.Date(date_0), brt[[reports$country[i]]]$date)],
df$R0[x],
Meff = df$Meff[x]
)}, numeric(1))
} else {
df$Rt0 <- df$R0
df$Rt_06_16 <- df$R0
}
df$iso3c <- reports$country[[i]]
df$pld <- out$interventions$date_Meff_change
get[[i]] <- df
}
for_will <- do.call(rbind, get)
library(tidyverse)
wb <- get_brt_world_bank_classification(date_0)
for_will$continent <- countrycode::countrycode(for_will$iso3c, "iso3c", "continent")
for_will$income <- wb$income_group[match(for_will$iso3c,wb$country_code)]
for_will$income <- factor(as.character(for_will$income),levels = c( "Low income", "Lower middle income", "Upper middle income", "High income"))
ecdc <- get_ecdc(date_0)
ecdc$iso3c <- ecdc$countryterritoryCode
iso_d_10 <- ecdc %>% group_by(iso3c) %>% summarise(sum_d = sum(deaths)) %>% filter(sum_d >= 100) %>% select(iso3c) %>% unlist %>% as.character()
sum_d <- ecdc %>% group_by(iso3c) %>% summarise(sum_d = sum(deaths,na.rm=TRUE))
for_will$sum_deaths <- sum_d$sum_d[match(for_will$iso3c, sum_d$iso3c)]
library(cowplot)
ratio <- for_will %>% filter(iso3c %in% iso_d_10) %>% ungroup %>% group_by(continent, iso3c, income) %>% summarise_all(mean) %>%
ggplot(aes(x=Meff_pl/Meff,y=income,fill=income)) +
ggridges::geom_density_ridges() + geom_hline(yintercept = 1)
meff <- for_will %>% filter(iso3c %in% iso_d_10) %>%ungroup %>% group_by(continent, iso3c, income) %>% summarise_all(mean) %>%
ggplot(aes(x=Meff,y=income,fill=income)) +
ggridges::geom_density_ridges() + geom_hline(yintercept = 1)
meff_pl <- for_will %>% filter(iso3c %in% iso_d_10) %>% ungroup %>% group_by(continent, iso3c, income) %>% summarise_all(mean) %>%
ggplot(aes(x=Meff_pl,y=income,fill=income)) +
ggridges::geom_density_ridges() + geom_hline(yintercept = 1)
x11()
cowplot::plot_grid(cowplot::get_legend(ratio+theme(legend.position = "top")),
cowplot::plot_grid(ratio+theme(legend.position = "none"),
meff+theme(legend.position = "none"),
meff_pl+theme(legend.position = "none"),ncol=3),
rel_heights = c(1,10),ncol=1)
## BOXES
ratio <- for_will %>% filter(iso3c %in% iso_d_10) %>%
filter(as.Date(pld) < as.Date(date_0) - 30) %>%
ungroup %>% group_by(continent, iso3c, income) %>% summarise_all(mean) %>%
ggplot(aes(x=Meff_pl/Meff,y=income,fill=income)) +
geom_boxplot(notch = TRUE) + geom_vline(xintercept = 1)
meff <- for_will %>% filter(iso3c %in% iso_d_10) %>%
filter(as.Date(pld) < as.Date(date_0) - 30) %>% ungroup %>% group_by(continent, iso3c, income) %>% summarise_all(mean) %>%
ggplot(aes(x=Meff,y=income,fill=income)) +
geom_boxplot(notch = TRUE) + geom_vline(xintercept = 3)
meff_pl <- for_will %>% filter(iso3c %in% iso_d_10) %>%
filter(as.Date(pld) < as.Date(date_0) - 30) %>% ungroup %>% group_by(continent, iso3c, income) %>% summarise_all(mean) %>%
ggplot(aes(x=Meff_pl,y=income,fill=income)) +
geom_boxplot(notch = TRUE) + geom_vline(xintercept = 3)
cowplot::plot_grid(cowplot::get_legend(ratio+theme(legend.position = "top")),
cowplot::plot_grid(ratio+theme(legend.position = "none"),
meff+theme(legend.position = "none"),
meff_pl+theme(legend.position = "none"),ncol=3),
rel_heights = c(1,10),ncol=1)
## POINTS
ratio <- for_will %>% filter(iso3c %in% iso_d_10) %>%
filter(as.Date(pld) < as.Date(date_0) - 30) %>%
ungroup %>% group_by(continent, iso3c, income) %>% summarise_all(mean) %>%
ggplot(aes(x=Meff_pl/Meff,y=income,color=continent,size=sum_deaths)) +
geom_point(notch = TRUE,position = ) + geom_vline(xintercept = 1)
meff <- for_will %>% filter(iso3c %in% iso_d_10) %>%
filter(as.Date(pld) < as.Date(date_0) - 30) %>% ungroup %>% group_by(continent, iso3c, income) %>% summarise_all(mean) %>%
ggplot(aes(x=Meff,y=income,color=continent,size=sum_deaths)) +
geom_point(notch = TRUE,width=0.2) + geom_vline(xintercept = 3)
meff_pl <- for_will %>% filter(iso3c %in% iso_d_10) %>%
filter(as.Date(pld) < as.Date(date_0) - 30) %>% ungroup %>% group_by(continent, iso3c, income) %>% summarise_all(mean) %>%
ggplot(aes(x=Meff_pl,y=income,color=continent,size=sum_deaths)) +
geom_point(notch = TRUE,width=0.2) + geom_vline(xintercept = 3)
cowplot::plot_grid(cowplot::get_legend(ratio+theme(legend.position = "top")),
cowplot::plot_grid(ratio+theme(legend.position = "none"),
meff+theme(legend.position = "none"),
meff_pl+theme(legend.position = "none"),ncol=3),
rel_heights = c(1,10),ncol=1)
for_will %>% ungroup %>% group_by(continent, iso3c, income) %>% summarise_all(mean) %>%
ggplot(aes(x=Meff_pl/Meff,y=interaction(income,continent),fill=income)) +
ggridges::geom_density_ridges() + geom_hline(yintercept = 1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.