rm(list = ls())
setwd("E:/Group/report/round16/Scripts/")
library(magrittr)
library(dplyr)
library(data.table)
library(openxlsx)
## Parameters
lag=14
# Path to output file
output_file <- paste0("E:/Group/report/round16/Tables/OR_Booster_efficiency_2Dose_14_",lag)
# Choice of data
round_ids <- c(16)
linkage <- TRUE
direct_export=TRUE
# Outcome and predictor variables
outcome <- "estbinres"
predictor <- "vax_status"
effect_of_interest <- "vax_statusVaccinated - 3 doses"
# List of models: variables to adjust on
models <- list(
m0 = NULL, # unadjusted
m1 = c("gender_char", "age"), # adjusted on age and gender
m2 = c("gender_char", "age", "imd_quintile", "region_id", "ethnic_new")
) # further adjusted on deprivation, region and ethnicity
# Models are further adjusted on round if looking at > 1 round
if (length(round_ids) > 1) {
models <- lapply(models, FUN = function(x) {
c("round", x)
})
}
# Adding an interaction term with round if looking at > 1 round
if (length(round_ids) > 1) {
interaction_term <- "vax_status*round"
} else {
interaction_term <- NULL
}
# Age bounds
age_lower_bound <- 17
age_upper_bound <- 65
output_file <- paste0(output_file, "_", age_lower_bound, "_", age_upper_bound)
# Analyses restricted to symptomatics
symptomatics <- FALSE
if (symptomatics) {
output_file <- paste0(output_file, "_sympt")
}
# Formatting
CI <- c(" (", ", ", ")")
# Path to file for recoding of the categorical variables
recoding_file <- "E:/Group/report/round15/TmpBB/Recoding.xlsx"
for (id in 1:length(round_ids)) {
round_id <- round_ids[id]
df_round <- readRDS(paste0("E:/dt20/linkedR", round_id, "datANG.rds"))
vaxFrom1 <- 14 # Consider vaccinated from this many days after first dose
vaxFrom2 <- 14
if(round_id==16){
df_round$link_vaxtype=df_round$link_vax1type
if(lag==21){
df_round <- df_round %>%
mutate(
vax_status = link_vax_status_booster21days,
vax_type = ifelse(link_vaxtype == "Oxford", "AZ", link_vaxtype),
vax_type = ifelse(!(vax_type %in% c("AZ", "Pfizer", "Moderna", "unvaccinated")) & !vax_status == "unvaccinated", "unknown", vax_type),
vax_type = ifelse(!(vax_type %in% c("AZ", "Pfizer", "Moderna", "unvaccinated", "unknown")), "unvaccinated", vax_type),
# Overwrite if not vaccinated by swab:
vax_type = ifelse(vax_status == "unvaccinated", "unvaccinated", vax_type)
) #%>%
#filter(vax_status %in% c("2 doses", "3 doses"))
}
if(lag==14){
df_round <- df_round %>%
mutate(
vax_status = link_vax_status_booster14days,
vax_type = ifelse(link_vaxtype == "Oxford", "AZ", link_vaxtype),
vax_type = ifelse(!(vax_type %in% c("AZ", "Pfizer", "Moderna", "unvaccinated")) & !vax_status == "unvaccinated", "unknown", vax_type),
vax_type = ifelse(!(vax_type %in% c("AZ", "Pfizer", "Moderna", "unvaccinated", "unknown")), "unvaccinated", vax_type),
# Overwrite if not vaccinated by swab:
vax_type = ifelse(vax_status == "unvaccinated", "unvaccinated", vax_type)
) %>%
filter(vax_status %in% c("2 doses", "3 doses")) # %>%
# filter(u_passcode %in% barbara_rds)
}
if(lag==7){
df_round <- df_round %>%
mutate(
vax_status = link_vax_status_7days,
vax_type = ifelse(link_vaxtype == "Oxford", "AZ", link_vaxtype),
vax_type = ifelse(!(vax_type %in% c("AZ", "Pfizer", "Moderna", "unvaccinated")) & !vax_status == "unvaccinated", "unknown", vax_type),
vax_type = ifelse(!(vax_type %in% c("AZ", "Pfizer", "Moderna", "unvaccinated", "unknown")), "unvaccinated", vax_type),
# Overwrite if not vaccinated by swab:
vax_type = ifelse(vax_status == "unvaccinated", "unvaccinated", vax_type)
) %>%
filter(vax_status %in% c("2 doses", "3 doses"))
}
if(lag==0){
df_round <- df_round %>%
mutate(
vax_status = link_vax_status_booster0days,
vax_type = ifelse(link_vaxtype == "Oxford", "AZ", link_vaxtype),
vax_type = ifelse(!(vax_type %in% c("AZ", "Pfizer", "Moderna", "unvaccinated")) & !vax_status == "unvaccinated", "unknown", vax_type),
vax_type = ifelse(!(vax_type %in% c("AZ", "Pfizer", "Moderna", "unvaccinated", "unknown")), "unvaccinated", vax_type),
# Overwrite if not vaccinated by swab:
vax_type = ifelse(vax_status == "unvaccinated", "unvaccinated", vax_type)
) %>%
filter(vax_status %in% c("2 doses", "3 doses"))
}
}else{
df_round <- df_round %>%
mutate(
vax_status = link_vax_status_2dose14days,
vax_type = ifelse(link_vaxtype == "Oxford", "AZ", link_vaxtype),
vax_type = ifelse(!(vax_type %in% c("AZ", "Pfizer", "Moderna", "unvaccinated")) & !vax_status == "unvaccinated", "unknown", vax_type),
vax_type = ifelse(!(vax_type %in% c("AZ", "Pfizer", "Moderna", "unvaccinated", "unknown")), "unvaccinated", vax_type),
# Overwrite if not vaccinated by swab:
vax_type = ifelse(vax_status == "unvaccinated", "unvaccinated", vax_type)
)# %>%
#filter(vax_status %in% c("2 doses", "3 doses"))
}
df_round$vax_status <- factor(df_round$vax_status,
levels = c("2 doses", "3 doses"),
labels = c("Vaccinated - 2 doses", "Vaccinated - 3 doses")
#df_round$vax_status <- factor(df_round$vax_status,
# levels = c("unvaccinated", "1 dose", "2 doses", "3 doses"),
# labels = c("Unvaccinated", "Vaccinated - 1 dose", "Vaccinated - 2 doses", "Vaccinated - 3 doses")
)
df_round$vax_type <- relevel(as.factor(df_round$vax_type), ref = "AZ")
if(round_id %in% c(13,14,15)){
df_round$gender_char= factor(df_round$gender_char,levels=c('1','2'),labels=c('Male','Female'))
}
assign(paste0("dfl", id), df_round)
}
if (length(round_ids) ==1) {
full_dataset <- dfl1
full_dataset$round <- as.factor(rep(paste0("Round", round_ids[1]), nrow(dfl1)))
}
if (length(round_ids) ==2) {
ids <- intersect(colnames(dfl1), colnames(dfl2))
full_dataset <- rbind(dfl1[, ids], dfl2[, ids])
full_dataset$round <- as.factor(c(
rep(paste0("Round", round_ids[1]), nrow(dfl1)),
rep(paste0("Round", round_ids[2]), nrow(dfl2))
))
}
if (length(round_ids)==3) {
ids <- intersect(intersect(colnames(dfl1), colnames(dfl2)), colnames(dfl3))
full_dataset <- rbind(dfl1[, ids], dfl2[, ids], dfl3[, ids])
full_dataset$round <- as.factor(c(
rep(paste0("Round", round_ids[1]), nrow(dfl1)),
rep(paste0("Round", round_ids[2]), nrow(dfl2)),
rep(paste0("Round", round_ids[3]), nrow(dfl3))
))
}
# Filtering: looking only at 35+
full_dataset <- filter(full_dataset, age > as.numeric(age_lower_bound) & age < as.numeric(age_upper_bound))
print("Age range:")
print(range(full_dataset$age))
if (symptomatics) {
full_dataset <- full_dataset[which(full_dataset$sympt_cat %in% c("Classic COVID symptoms", "Other symptoms")), ]
}
annot_file <- "E:/Group/report/round15/TmpBB/Variable_names.xlsx"
#Only Consider double doses >6 months
# Id1=which(full_dataset$link_vaxrecenttoswab>180)
# Id1=which(full_dataset$link_vaxrecenttoswab>181 & full_dataset$vax_status=="Vaccinated - 2 doses")
# Id2=which(full_dataset$vax_status=="Vaccinated - 3 doses")
# Id=sort(c(Id1,Id2))
#
# table(full_dataset[Id,]$vax_status)
# Extracting covariate names
covs <- unique(c(
outcome, predictor,
unique(unlist(models)),
"round")
)
tmp <- read.xlsx(annot_file)
covs_names <- tmp[, 2]
names(covs_names) <- tmp[, 1]
covs_names <- covs_names[covs]
# Recoding categorical variables
covs_to_recode <- getSheetNames(recoding_file)
covs_to_recode <- intersect(names(covs_names), covs_to_recode)
if (length(covs_to_recode) > 0) {
for (i in 1:length(covs_to_recode)) {
recoding <- read.xlsx(recoding_file, sheet = covs_to_recode[i])
recoding[which(is.na(recoding[, 1])), 1] <- "NA"
renaming <- recoding[, 2]
names(renaming) <- recoding[, 1]
x <- as.character(full_dataset[, covs_to_recode[i]])
print(table(x))
x[is.na(x)] <- "NA"
x <- factor(x, levels = names(renaming), labels = renaming)
print(table(x))
full_dataset[, covs_to_recode[i]] <- x
}
}
# List of variables to keep
# full_dataset <- full_dataset[Id, covs]
full_dataset <- full_dataset[, covs] # for those with 2 dose only definition
mytable <- NULL
for (model_id in paste0("m", 0:2)) {
# Applying stratification
mydata <- full_dataset
print(nrow(mydata))
if(model_id=="m0"){
mytable <- c(table(full_dataset$vax_status,full_dataset$estbinres)[1,],"-")
}
# Computing the counts
counts <- table(mydata[which(mydata[,predictor]=="Vaccinated - 3 doses"), outcome])
# Running the model (no interaction)
f <- paste0(outcome, " ~ ", paste0(c(predictor, models[[model_id]]), collapse = " + "))
print(f)
mymodel <- glm(as.formula(f), data = mydata, family = binomial(link = "logit"))
# Extracting relevant coefficients
VE <- cbind(
exp(mymodel$coefficients)[effect_of_interest],
exp(confint.default(mymodel))[effect_of_interest, , drop = FALSE]
)
VE_output <- paste0(
paste0(formatC(VE[1, 1] , format = "f", digits = 4)),
CI[1],
paste0(formatC(VE[1, 2] , format = "f", digits = 4)),
CI[2],
paste0(formatC(VE[1, 3] , format = "f", digits = 4)),
CI[3]
)
if (!is.null(interaction_term)) {
# Running the model (with interaction)
f <- paste0(f, " + ", interaction_term)
print(f)
mymodel_interaction <- glm(as.formula(f), data = mydata, family = binomial(link = "logit"))
# Extracting relevant coefficients
interaction <- summary(mymodel_interaction)$coefficients
# Combining outputs from the two models
output <- c(
counts,
VE_output,
formatC(interaction[nrow(interaction), 4], format = "e", digits = 2)
)
} else {
output <- c(counts, VE_output)
}
mytable <- rbind(mytable, output)
}
if(is.null(interaction_term)) {
colnames(mytable) <- c("Test negatives", "Test positives", "OR (95% CI)")
rownames(mytable) <- c("Vaccinated- 2Doses",paste0("model",c(0:2)))
}else{
colnames(mytable) <- c("Category", "Adjustment", "Test negatives", "Test positives", "OR (95% CI)", "p-Interaction")
}
write.xlsx(mytable,
paste0(output_file, "_", paste(round_ids, collapse=""), "_", Sys.Date(), ".xlsx"),
rowNames = TRUE
)
if (direct_export) {
file.copy(
from = paste0(output_file, "_", paste(round_ids, collapse=""), "_", Sys.Date(), ".xlsx"),
to = "T:/", overwrite = TRUE
)
}
print(output_file)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.