#'Quantative analysis of segemented image and LISA map
#'
#'@description The function calculates the fraction of pixels from different clusters fall into different zones of the LISA map
#'@param ClusteredImg two-dimensinal clustered image
#'@param LISAmap two-dimensional LISA map
#'@return fraction of pixels from different clusters fall into different zones of the LISA map
#'@export
ClusteredLISAimgQA <- function( ClusteredImg,LISAmap,plot='T')
{
img1 <- LISAmap;
img2 <- ClusteredImg
tissuePixeids <- which(img1 %in% 1 |img1 %in% 2|img1 %in% 3|img1 %in% 4)
Nucluster <- length(table(img2[tissuePixeids]))
QAmatrix <- as.data.frame(matrix(0,nrow = 4,ncol=Nucluster))
LISAzones <- c('HH','LL','HL','LH')
rownames(QAmatrix) <- LISAzones
colnames(QAmatrix) <- paste0('cluster',c(1:Nucluster))
id1 <- which(img1 %in% 1); QAmatrix[1,] <- as.vector(table(img2[id1]))
id1 <- which(img1 %in% 2); QAmatrix[2,] <- as.vector(table(img2[id1]))
id1 <- which(img1 %in% 3); QAmatrix[3,] <- as.vector(table(img2[id1]))
id1 <- which(img1 %in% 4); QAmatrix[4,] <- as.vector(table(img2[id1]))
QAmatrix <- QAmatrix/tissuePixeids
if(plot== 'T'){
par(mfrow=c(2,2))
for(i in 1:4){
barplot(as.matrix(QAmatrix[i,]),ylim = c(0,max(QAmatrix)),main = LISAzones[i])}
}
return(QAmatrix)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.