#' plot.markers
#'
#' Plots clustering results for all markers in an index. The default is to plot all raw unfiltered clusters. However, filtering can be applied if a gbm model is provieded.
#'
#' @param index indices of the markers to be plotted
#' @param GSdata Processed GenomeStudio data
#' @param mixmodout Clustering output from step 2
#' @param filter Should all clusters be plotted (pre-filtering), or should the noise filter be applied first. (default = F)
#' @param gbm_model The gbm model to be used for filtering (default = NULL)
#'
#' @return A folder containing plots for all markers in .png form
plot.markers <- function(index, GSdata, mixmodout, filter = F, gbm_model = NULL) {
cat('Creating plot folder')
# Make a directory for storing the excel file
dir.create('marker.plots')
cat(paste('\n', 'Plotting markers', sep = ''))
# Plotting the markers
for (n in index) {
marker_name <- mixmodout[[n]][[2]]
file_name <- paste(which(index == n), '_', marker_name, '.png', sep = "")
if(filter == F) {clustplot <- plot.raw.clust(n, GSdata, mixmodout)}
if(filter == T) {clustplot <- plot.filter.clust(n, GSdata, mixmodout, gbm_model)}
ggsave(paste('marker.plots/', file_name, '.png', sep = ""), plot = clustplot, device = 'png')
}
cat(paste('\n', 'Finished plotting marker clustering', sep = ''))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.