1  | 
x1 | 
|
y1 | 
|
x2 | 
|
y2 | 
|
fr1 | 
|
fr2 | 
|
tr | 
|
alpha | 
|
plotit | 
|
pts | 
|
sm | 
|
xout | 
|
outfun | 
|
DIF | 
|
LP | 
|
xlab | 
|
ylab | 
|
pch1 | 
|
pch2 | 
|
... | 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111  | ##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.
## The function is currently defined as
function (x1, y1, x2, y2, fr1 = 1, fr2 = 1, tr = 0.2, alpha = 0.05, 
    plotit = TRUE, pts = NA, sm = FALSE, xout = FALSE, outfun = out, 
    DIF = FALSE, LP = TRUE, xlab = "X", ylab = "Y", pch1 = "*", 
    pch2 = "+", ...) 
{
    if (ncol(as.matrix(x1)) > 1) 
        stop("One covariate only is allowed with this function")
    if (length(x1) != length(y1)) 
        stop("x1 and y1 have different lengths")
    if (length(x1) != length(x2)) 
        stop("x1 and y2 have different lengths")
    if (length(x2) != length(y2)) 
        stop("x2 and y2 have different lengths")
    if (length(y1) != length(y2)) 
        stop("y1 and y2 have different lengths")
    xy = elimna(cbind(x1, y1, x2, y2))
    x1 = xy[, 1]
    y1 = xy[, 2]
    x2 = xy[, 3]
    y2 = xy[, 4]
    xorder <- order(x1)
    y1 <- y1[xorder]
    x1 <- x1[xorder]
    xorder <- order(x2)
    y2 <- y2[xorder]
    x2 <- x2[xorder]
    if (!is.na(pts[1])) 
        mat = Dancovapts(x1, y1, x2, y2, fr1 = fr1, fr2 = fr2, 
            tr = tr, alpha = alpha, plotit = FALSE, pts = pts, 
            sm = sm, xout = xout, outfun = outfun, DIF = DIF, 
            ...)
    if (is.na(pts[1])) {
        npt <- 5
        isub <- c(1:5)
        test <- c(1:5)
        xorder <- order(x1)
        y1 <- y1[xorder]
        x1 <- x1[xorder]
        xorder <- order(x2)
        y2 <- y2[xorder]
        x2 <- x2[xorder]
        n1 <- 1
        n2 <- 1
        vecn <- 1
        n = length(y1)
        ivals = c(1:n)
        for (i in 1:length(x1)) n1[i] <- length(y1[near(x1, x1[i], 
            fr1)])
        for (i in 1:length(x1)) n2[i] <- length(y2[near(x2, x1[i], 
            fr2)])
        for (i in 1:length(x1)) vecn[i] <- min(n1[i], n2[i])
        sub <- c(1:length(x1))
        isub[1] <- min(sub[vecn >= 12])
        isub[5] <- max(sub[vecn >= 12])
        isub[3] <- floor((isub[1] + isub[5])/2)
        isub[2] <- floor((isub[1] + isub[3])/2)
        isub[4] <- floor((isub[3] + isub[5])/2)
        mat <- matrix(NA, 5, 9)
        dimnames(mat) <- list(NULL, c("X", "n", "DIF", "TEST", 
            "se", "ci.low", "ci.hi", "p.value", "p.crit"))
        for (i in 1:5) {
            t1 = near(x1, x1[isub[i]], fr1)
            t2 = near(x2, x1[isub[i]], fr2)
            iv1 = ivals[t1]
            iv2 = ivals[t2]
            pick = unique(c(iv1, iv2))
            mat[i, 2] <- length(y1[pick])
            if (!DIF) 
                test <- yuend(y1[pick], y2[pick], tr = tr, alpha = alpha)
            if (DIF) 
                test <- trimci(y1[pick] - y2[pick], tr = tr, 
                  pr = FALSE, alpha = alpha)
            mat[i, 1] <- x1[isub[i]]
            if (!DIF) {
                mat[i, 4] <- test$teststat
                mat[i, 3] <- test$dif
            }
            if (DIF) {
                mat[i, 4] <- test$test.stat
                mat[i, 3] <- test$estimate
            }
            mat[i, 5] <- test$se
            mat[i, 6] <- test$ci[1]
            mat[i, 7] <- test$ci[2]
            mat[i, 8] <- test$p.value
        }
        temp2 <- order(0 - mat[, 8])
        bot = c(1:nrow(mat))
        dvec = sort(alpha/bot, decreasing = TRUE)
        mat[temp2, 9] = dvec
    }
    if (plotit) {
        if (xout) {
            flag <- outfun(x1, ...)$keep
            x1 <- x1[flag]
            y1 <- y1[flag]
            flag <- outfun(x2, ...)$keep
            x2 <- x2[flag]
            y2 <- y2[flag]
        }
        runmean2g(x1, y1, x2, y2, fr = fr1, est = tmean, sm = sm, 
            xout = FALSE, LP = LP, xlab = xlab, ylab = ylab, 
            pch1 = pch1, pch2 = pch2, ...)
    }
    list(output = mat)
  }
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.