1 | kernelEVD(x)
|
x |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | ##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.
## The function is currently defined as
function (x)
{
if (!is.matrix(x)) {
stop("The function kernelEVD requires input of type 'matrix'.")
}
n <- nrow(x)
p <- ncol(x)
if (n > p) {
return(classSVD(x))
}
else {
centerofX <- apply(x, 2, mean)
Xcentered <- scale(x, center = TRUE, scale = FALSE)
if (n == 1) {
stop("The sample size is 1. No singular value decomposition can be performed.")
}
eigen <- eigen(Xcentered %*% t(Xcentered)/(n - 1))
eigen.descending <- greatsort(eigen$values)
loadings <- eigen$vectors[, eigen.descending$index]
tolerance <- n * max(eigen$values) * .Machine$double.eps
rank <- sum(eigen.descending$sortedvector > tolerance)
eigenvalues <- eigen.descending$sortedvector[1:rank]
loadings <- t((Xcentered/sqrt(n - 1))) %*% loadings[,
1:rank] %*% diag(1/sqrt(eigenvalues), nrow = length(eigenvalues),
ncol = length(eigenvalues))
scores <- Xcentered %*% loadings
return(list(loadings = as.matrix(loadings), scores = as.matrix(scores),
eigenvalues = as.vector(eigenvalues), rank = rank,
Xcentered = as.matrix(Xcentered), centerofX = as.vector(centerofX)))
}
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.