nelderv2:

Usage Arguments Examples

Usage

1
nelderv2(x, N, FN, START = c(rep(1, N)), STEP = c(rep(1, N)), XMIN = c(rep(0, N)), XSEC = c(rep(0, N)), ...)

Arguments

x
N
FN
START
STEP
XMIN
XSEC
...

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.

## The function is currently defined as
function (x, N, FN, START = c(rep(1, N)), STEP = c(rep(1, N)), 
    XMIN = c(rep(0, N)), XSEC = c(rep(0, N)), ...) 
{
    ICOUNT <- 500
    REQMIN <- 1e-07
    NN <- N + 1
    P <- matrix(NA, nrow = N, ncol = NN)
    P[, NN] <- START
    PBAR <- NA
    RCOEFF <- 1
    ECOEFF <- 2
    CCOEFF <- 0.5
    KCOUNT <- ICOUNT
    ICOUNT <- 0
    DABIT <- 2.04067e-35
    BIGNUM <- 1e+38
    KONVGE <- 5
    XN <- N
    DN <- N
    Y <- rep(0, NN)
    Y[NN] <- FN(x, START, ...)
    ICOUNT <- ICOUNT + 1
    for (J in 1:N) {
        DCHK <- START[J]
        START[J] <- DCHK + STEP[J]
        for (I in 1:N) {
            P[I, J] <- START[I]
        }
        Y[J] <- FN(x, START, ...)
        ICOUNT <- ICOUNT + 1
        START[J] <- DCHK
    }
    I1000 <- T
    while (I1000) {
        YLO <- Y[1]
        YNEWLO <- YLO
        ILO <- 1
        IHI <- 1
        for (I in 2:NN) {
            if (Y[I] < YLO) {
                YLO <- Y[I]
                ILO <- I
            }
            if (Y[I] > YNEWLO) {
                YNEWLO <- Y[I]
                IHI <- I
            }
        }
        DCHK <- (YNEWLO + DABIT)/(YLO + DABIT) - 1
        if (abs(DCHK) < REQMIN) {
            I1000 <- F
            next
        }
        KONVGE <- KONVGE - 1
        if (KONVGE == 0) {
            KONVGE <- 5
            for (I in 1:N) {
                COORD1 <- P[I, 1]
                COORD2 <- COORD1
                for (J in 2:NN) {
                  if (P[I, J] < COORD1) 
                    COORD1 <- P[I, J]
                  if (P[I, J] > COORD2) 
                    COORD2 <- P[I, J]
                }
                DCHK <- (COORD2 + DABIT)/(COORD1 + DABIT) - 1
                if (abs(DCHK) > REQMIN) 
                  break
            }
        }
        if (ICOUNT >= KCOUNT) {
            I1000 <- F
            next
        }
        for (I in 1:N) {
            Z <- 0
            Z <- sum(P[I, 1:NN])
            Z <- Z - P[I, IHI]
            PBAR[I] <- Z/DN
        }
        PSTAR <- (1 + RCOEFF) * PBAR - RCOEFF * P[, IHI]
        YSTAR <- FN(x, PSTAR, ...)
        ICOUNT <- ICOUNT + 1
        if (YSTAR < YLO && ICOUNT >= KCOUNT) {
            P[, IHI] <- PSTAR
            Y[IHI] <- YSTAR
            next
        }
        IFLAG <- T
        if (YSTAR < YLO) {
            P2STAR <- ECOEFF * PSTAR + (1 - ECOEFF) * PBAR
            Y2STAR <- FN(x, P2STAR, ...)
            ICOUNT <- ICOUNT + 1
            if (Y2STAR >= YSTAR) {
                P[, IHI] <- PSTAR
                Y[IHI] <- YSTAR
                next
            }
            IFLAG <- T
            while (YSTAR < Y[IHI]) {
                P[, IHI] <- P2STAR
                Y[IHI] <- Y2STAR
                IFLAG <- F
                break
                L <- sum(Y[1:NN] > YSTAR)
                if (L > 1) {
                  P[, IHI] <- PSTAR
                  Y[IHI] <- YSTAR
                  IFLAG <- T
                  break
                }
                if (L > 1) 
                  break
                if (L != 0) {
                  P[1:N, IHI] <- PSTAR[1:N]
                  Y[IHI] <- YSTAR
                }
                I1000 <- F
                break
                if (ICOUNT >= KCOUNT) {
                  I1000 <- F
                  next
                }
                P2STAR[1:N] <- CCOEFF * P[1:N, IHI] + (1 - CCOEFF) * 
                  PBAR[1:N]
                Y2STAR <- FN(x, P2STAR, ...)
                ICOUNT <- ICOUNT + 1
            }
        }
        if (IFLAG) {
            for (J in 1:NN) {
                P[, J] = (P[, J] + P[, ILO]) * 0.5
                XMIN <- P[, J]
                Y[J] <- FN(x, XMIN, ...)
            }
            ICOUNT <- ICOUNT + NN
            if (ICOUNT < KCOUNT) 
                next
            I1000 <- F
            next
        }
        P[1:N, IHI] <- PSTAR[1:N]
        Y[IHI] <- YSTAR
    }
    for (J in 1:NN) {
        XMIN[1:N] <- P[1:N, J]
    }
    Y[J] <- FN(x, XMIN, ...)
    YNEWLO <- BIGNUM
    for (J in 1:NN) {
        if (Y[J] < YNEWLO) {
            YNEWLO <- Y[J]
            IBEST <- J
        }
    }
    Y[IBEST] <- BIGNUM
    YSEC <- BIGNUM
    for (J in 1:NN) {
        if (Y[J] < YSEC) {
            YSEC <- Y[J]
            ISEC <- J
        }
    }
    XMIN[1:N] <- P[1:N, IBEST]
    XSEC[1:N] <- P[1:N, ISEC]
    XMIN
  }

musto101/wilcox_R documentation built on May 23, 2019, 10:52 a.m.