1 |
x |
|
est |
|
con |
|
alpha |
|
nboot |
|
grp |
|
op |
|
allp |
|
MM |
|
MC |
|
cop |
|
SEED |
|
na.rm |
|
... |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 | ##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.
## The function is currently defined as
function (x, est = onestep, con = 0, alpha = 0.05, nboot = 2000,
grp = NA, op = 1, allp = TRUE, MM = FALSE, MC = FALSE, cop = 3,
SEED = TRUE, na.rm = FALSE, ...)
{
con <- as.matrix(con)
if (is.matrix(x) || is.data.frame(x))
x = listm(x)
if (!is.list(x))
stop("Data must be stored in list mode or in matrix mode.")
if (!is.na(grp)) {
xx <- list()
for (i in 1:length(grp)) xx[[i]] <- x[[grp[i]]]
x <- xx
}
J <- length(x)
mvec <- NA
nvec = NA
for (j in 1:J) {
temp <- x[[j]]
if (na.rm)
temp <- temp[!is.na(temp)]
x[[j]] <- temp
mvec[j] <- est(temp, ...)
nvec[j] = length(temp)
}
Jm <- J - 1
d <- ifelse(con == 0, (J^2 - J)/2, ncol(con))
if (sum(con^2) == 0) {
if (allp) {
con <- matrix(0, J, d)
id <- 0
for (j in 1:Jm) {
jp <- j + 1
for (k in jp:J) {
id <- id + 1
con[j, id] <- 1
con[k, id] <- 0 - 1
}
}
}
if (!allp) {
con <- matrix(0, J, Jm)
for (j in 1:Jm) {
jp <- j + 1
con[j, j] <- 1
con[jp, j] <- 0 - 1
}
}
}
bvec <- matrix(NA, nrow = J, ncol = nboot)
if (SEED)
set.seed(2)
for (j in 1:J) {
data <- matrix(sample(x[[j]], size = length(x[[j]]) *
nboot, replace = TRUE), nrow = nboot)
bvec[j, ] <- apply(data, 1, est, na.rm = na.rm, ...)
}
chkna = sum(is.na(bvec))
if (chkna > 0) {
print("Bootstrap estimates of location could not be computed")
print("This can occur when using an M-estimator")
print("Might try est=tmean")
}
bcon <- t(con) %*% bvec
tvec <- t(con) %*% mvec
tvec <- tvec[, 1]
tempcen <- apply(bcon, 1, mean)
vecz <- rep(0, ncol(con))
bcon <- t(bcon)
smat <- var(bcon - tempcen + tvec)
temp <- bcon - tempcen + tvec
bcon <- rbind(bcon, vecz)
if (op == 1)
dv <- mahalanobis(bcon, tvec, smat)
if (op == 2) {
smat <- cov.mcd(temp)$cov
dv <- mahalanobis(bcon, tvec, smat)
}
if (op == 3) {
if (!MC)
dv <- pdis(bcon, MM = MM, cop = cop)
if (MC)
dv <- pdisMC(bcon, MM = MM, cop = cop)
}
bplus <- nboot + 1
sig.level <- 1 - sum(dv[bplus] >= dv[1:nboot])/nboot
list(p.value = sig.level, psihat = tvec, con = con, n = nvec)
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.