1 |
x |
|
alpha |
|
nboot |
|
grp |
|
est |
|
con |
|
bhop |
|
SEED |
|
... |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 | ##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.
## The function is currently defined as
function (x, alpha = 0.05, nboot = NA, grp = NA, est = onestep,
con = 0, bhop = FALSE, SEED = TRUE, ...)
{
okay = FALSE
if (identical(est, onestep))
okay = TRUE
if (identical(est, mom))
okay = TRUE
if (!okay)
stop("For estimators other than onestep and mom, use linconpb")
con <- as.matrix(con)
if (is.matrix(x))
x <- listm(x)
if (!is.list(x))
stop("Data must be stored in list mode or in matrix mode.")
if (!is.na(sum(grp))) {
xx <- list()
for (i in 1:length(grp)) xx[[i]] <- x[[grp[i]]]
x <- xx
}
J <- length(x)
tempn <- 0
mvec <- NA
for (j in 1:J) {
temp <- x[[j]]
temp <- temp[!is.na(temp)]
tempn[j] <- length(temp)
x[[j]] <- temp
mvec[j] <- est(temp, ...)
}
nmax = max(tempn)
Jm <- J - 1
if (sum(con^2) == 0) {
ncon <- (J^2 - J)/2
con <- matrix(0, J, ncon)
id <- 0
for (j in 1:Jm) {
jp <- j + 1
for (k in jp:J) {
id <- id + 1
con[j, id] <- 1
con[k, id] <- 0 - 1
}
}
}
ncon <- ncol(con)
if (nrow(con) != J) {
stop("Something is wrong with con; the number of rows does not match the number of groups.")
}
if (is.na(nboot)) {
nboot <- 5000
if (J <= 8)
nboot <- 4000
if (J <= 3)
nboot <- 2000
}
if (!bhop) {
if (!identical(est, onestep))
print("When est is not equal to onestep, suggest using bhop=TRUE")
if (alpha == 0.05) {
dvec <- c(0.025, 0.025, 0.0169, 0.0127, 0.0102, 0.00851,
0.0073, 0.00639, 0.00568, 0.00511)
if (ncon > 10) {
avec <- 0.05/c(11:ncon)
dvec <- c(dvec, avec)
}
}
if (alpha == 0.01) {
dvec <- c(0.005, 0.005, 0.00334, 0.00251, 0.00201,
0.00167, 0.00143, 0.00126, 0.00112, 0.00101)
if (nmax >= 100)
dvec[1] = 0.01
if (ncon > 10) {
avec <- 0.01/c(11:ncon)
dvec <- c(dvec, avec)
}
}
if (alpha != 0.05 && alpha != 0.01) {
dvec <- alpha/c(1:ncon)
dvec[1] <- alpha/2
}
dvec <- 2 * dvec
}
if (nmax > 80) {
if (alpha == 0.05) {
dvec <- c(0.05, 0.025, 0.0169, 0.0127, 0.0102, 0.00851,
0.0073, 0.00639, 0.00568, 0.00511)
if (ncon > 10) {
avec <- 0.05/c(11:ncon)
dvec <- c(dvec, avec)
}
}
if (alpha == 0.01) {
dvec <- c(0.01, 0.005, 0.00334, 0.00251, 0.00201,
0.00167, 0.00143, 0.00126, 0.00112, 0.00101)
if (ncon > 10) {
avec <- 0.01/c(11:ncon)
dvec <- c(dvec, avec)
}
}
if (alpha != 0.05 && alpha != 0.01) {
dvec <- alpha/c(1:ncon)
}
}
if (bhop)
dvec <- (ncon - c(1:ncon) + 1) * alpha/ncon
bvec <- matrix(NA, nrow = J, ncol = nboot)
if (SEED)
set.seed(2)
for (j in 1:J) {
data <- matrix(sample(x[[j]], size = length(x[[j]]) *
nboot, replace = TRUE), nrow = nboot)
bvec[j, ] <- apply(data, 1, est, ...)
}
chkna = sum(is.na(bvec))
if (chkna > 0) {
print("Bootstrap estimates of location could not be computed")
print("This can occur when using an M-estimator")
print("Might try est=tmean")
}
test <- NA
bcon <- t(con) %*% bvec
tvec <- t(con) %*% mvec
for (d in 1:ncon) {
test[d] <- (sum(bcon[d, ] > 0) + 0.5 * sum(bcon[d, ] ==
0))/nboot
if (test[d] > 0.5)
test[d] <- 1 - test[d]
}
test <- 2 * test
output <- matrix(0, ncon, 6)
dimnames(output) <- list(NULL, c("con.num", "psihat", "p.value",
"p.crit", "ci.lower", "ci.upper"))
temp2 <- order(0 - test)
zvec <- dvec[1:ncon]
sigvec <- (test[temp2] >= zvec)
output[temp2, 4] <- zvec
icl <- round(dvec[ncon] * nboot/2) + 1
icu <- nboot - icl - 1
for (ic in 1:ncol(con)) {
output[ic, 2] <- tvec[ic, ]
output[ic, 1] <- ic
output[ic, 3] <- test[ic]
temp <- sort(bcon[ic, ])
output[ic, 5] <- temp[icl]
output[ic, 6] <- temp[icu]
}
num.sig <- sum(output[, 3] <= output[, 4])
list(output = output, con = con, num.sig = num.sig)
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.