1 |
x |
|
y |
|
alpha |
|
con |
|
est |
|
plotit |
|
dif |
|
grp |
|
nboot |
|
BA |
|
hoch |
|
xlab |
|
ylab |
|
pr |
|
SEED |
|
SR |
|
... |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 | ##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.
## The function is currently defined as
function (x, y = NULL, alpha = 0.05, con = 0, est = onestep,
plotit = TRUE, dif = TRUE, grp = NA, nboot = NA, BA = FALSE,
hoch = FALSE, xlab = "Group 1", ylab = "Group 2", pr = TRUE,
SEED = TRUE, SR = FALSE, ...)
{
if (hoch)
SR = FALSE
if (SR) {
okay = FALSE
if (identical(est, onestep))
okay = TRUE
if (identical(est, mom))
okay = TRUE
SR = okay
}
if (dif) {
if (pr)
print("dif=T, so analysis is done on difference scores")
temp <- rmmcppbd(x, y = y, alpha = 0.05, con = con, est,
plotit = plotit, grp = grp, nboot = nboot, hoch = TRUE,
...)
output <- temp$output
con <- temp$con
}
if (!dif) {
if (pr) {
print("dif=F, so analysis is done on marginal distributions")
if (!BA)
print("With M-estimator or MOM, suggest using BA=T and hoch=T")
}
if (!is.null(y[1]))
x <- cbind(x, y)
if (!is.list(x) && !is.matrix(x))
stop("Data must be stored in a matrix or in list mode.")
if (is.list(x)) {
if (is.matrix(con)) {
if (length(x) != nrow(con))
stop("The number of rows in con is not equal to the number of groups.")
}
}
if (is.list(x)) {
mat <- matl(x)
}
if (is.matrix(x) && is.matrix(con)) {
if (ncol(x) != nrow(con))
stop("The number of rows in con is not equal to the number of groups.")
mat <- x
}
if (is.matrix(x))
mat <- x
if (!is.na(sum(grp)))
mat <- mat[, grp]
mat <- elimna(mat)
x <- mat
J <- ncol(mat)
xcen <- x
for (j in 1:J) xcen[, j] <- x[, j] - est(x[, j], ...)
Jm <- J - 1
if (sum(con^2) == 0) {
d <- (J^2 - J)/2
con <- matrix(0, J, d)
id <- 0
for (j in 1:Jm) {
jp <- j + 1
for (k in jp:J) {
id <- id + 1
con[j, id] <- 1
con[k, id] <- 0 - 1
}
}
}
d <- ncol(con)
if (is.na(nboot)) {
if (d <= 4)
nboot <- 1000
if (d > 4)
nboot <- 5000
}
n <- nrow(mat)
crit.vec <- alpha/c(1:d)
connum <- ncol(con)
if (SEED)
set.seed(2)
xbars <- apply(mat, 2, est, ...)
psidat <- NA
for (ic in 1:connum) psidat[ic] <- sum(con[, ic] * xbars)
psihat <- matrix(0, connum, nboot)
psihatcen <- matrix(0, connum, nboot)
bvec <- matrix(NA, ncol = J, nrow = nboot)
bveccen <- matrix(NA, ncol = J, nrow = nboot)
if (pr)
print("Taking bootstrap samples. Please wait.")
data <- matrix(sample(n, size = n * nboot, replace = TRUE),
nrow = nboot)
for (ib in 1:nboot) {
bvec[ib, ] <- apply(x[data[ib, ], ], 2, est, ...)
bveccen[ib, ] <- apply(xcen[data[ib, ], ], 2, est,
...)
}
test <- 1
bias <- NA
for (ic in 1:connum) {
psihat[ic, ] <- apply(bvec, 1, bptdpsi, con[, ic])
psihatcen[ic, ] <- apply(bveccen, 1, bptdpsi, con[,
ic])
bias[ic] <- sum((psihatcen[ic, ] > 0))/nboot - 0.5
ptemp <- (sum(psihat[ic, ] > 0) + 0.5 * sum(psihat[ic,
] == 0))/nboot
if (BA)
test[ic] <- ptemp - 0.1 * bias[ic]
if (!BA)
test[ic] <- ptemp
test[ic] <- min(test[ic], 1 - test[ic])
test[ic] <- max(test[ic], 0)
}
test <- 2 * test
ncon <- ncol(con)
dvec <- alpha/c(1:ncon)
if (SR) {
if (alpha == 0.05) {
dvec <- c(0.025, 0.025, 0.0169, 0.0127, 0.0102,
0.00851, 0.0073, 0.00639, 0.00568, 0.00511)
dvecba <- c(0.05, 0.025, 0.0169, 0.0127, 0.0102,
0.00851, 0.0073, 0.00639, 0.00568, 0.00511)
if (ncon > 10) {
avec <- 0.05/c(11:ncon)
dvec <- c(dvec, avec)
}
}
if (alpha == 0.01) {
dvec <- c(0.005, 0.005, 0.00334, 0.00251, 0.00201,
0.00167, 0.00143, 0.00126, 0.00112, 0.00101)
dvecba <- c(0.01, 0.005, 0.00334, 0.00251, 0.00201,
0.00167, 0.00143, 0.00126, 0.00112, 0.00101)
if (ncon > 10) {
avec <- 0.01/c(11:ncon)
dvec <- c(dvec, avec)
}
}
if (alpha != 0.05 && alpha != 0.01) {
dvec <- alpha/c(1:ncon)
dvecba <- dvec
dvec[2] <- alpha
}
}
if (hoch)
dvec <- alpha/c(1:ncon)
dvecba <- dvec
if (plotit && ncol(bvec) == 2) {
z <- c(0, 0)
one <- c(1, 1)
plot(rbind(bvec, z, one), xlab = xlab, ylab = ylab,
type = "n")
points(bvec)
totv <- apply(x, 2, est, ...)
cmat <- var(bvec)
dis <- mahalanobis(bvec, totv, cmat)
temp.dis <- order(dis)
ic <- round((1 - alpha) * nboot)
xx <- bvec[temp.dis[1:ic], ]
xord <- order(xx[, 1])
xx <- xx[xord, ]
temp <- chull(xx)
lines(xx[temp, ])
lines(xx[c(temp[1], temp[length(temp)]), ])
abline(0, 1)
}
temp2 <- order(0 - test)
ncon <- ncol(con)
zvec <- dvec[1:ncon]
if (BA)
zvec <- dvecba[1:ncon]
sigvec <- (test[temp2] >= zvec)
output <- matrix(0, connum, 6)
dimnames(output) <- list(NULL, c("con.num", "psihat",
"p.value", "p.sig", "ci.lower", "ci.upper"))
tmeans <- apply(mat, 2, est, ...)
psi <- 1
output[temp2, 4] <- zvec
for (ic in 1:ncol(con)) {
output[ic, 2] <- sum(con[, ic] * tmeans)
output[ic, 1] <- ic
output[ic, 3] <- test[ic]
temp <- sort(psihat[ic, ])
icl <- round(alpha * nboot/2) + 1
icu <- nboot - (icl - 1)
output[ic, 5] <- temp[icl]
output[ic, 6] <- temp[icu]
}
}
num.sig <- sum(output[, 3] <= output[, 4])
list(output = output, con = con, num.sig = num.sig)
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.