# QLearnFit obtained the ITR by Q learning method.
QLearnFit <- function(data, intercept=FALSE, standardize = TRUE){
size <- dim(data$predictor)[1]
Outcome <- data$outcome
Treatment <- (data$treatment - 0.5) * 2
pseudoPredictor <- cbind(apply(data$predictor,2,function(t){t*Treatment}), Treatment, data$predictor)
if(!intercept){
pseudoPredictor <- cbind(apply(data$predictor,2,function(t){t*Treatment}), data$predictor)
}
fit <- glmnet::cv.glmnet(x=pseudoPredictor, y=Outcome, family='gaussian', intercept = TRUE, standardize = standardize)
list(fit=fit, pseudoPredictor = pseudoPredictor, pseudoTreatment = Treatment, pseudoOutcome = Outcome)
}
# scoreTest get the score test for each covariate
scoreTestQLearn <- function(qLearnFit, parallel = TRUE, indexToTest = c(1:8), intercept=TRUE){
p <- dim(qLearnFit$pseudoPredictor)[2]
n <- dim(qLearnFit$pseudoPredictor)[1]
fit_w <- NULL
score <- rep(NA, times=length(indexToTest))
sigma <- rep(NA, times=length(indexToTest))
betaAN <- rep(NA, times=length(indexToTest))
sigmaAN <- rep(NA, times=length(indexToTest))
if (!parallel){
for (index in indexToTest){
pseudoPredictor <- qLearnFit$pseudoPredictor[,-index]
pseudoOutcome <- qLearnFit$pseudoPredictor[,index]
fit_w[[index]] <- glmnet::cv.glmnet(x=pseudoPredictor, y=pseudoOutcome, intercept = intercept, standardize = TRUE)
link_w <- predict(fit_w[[index]], newx = pseudoPredictor, s=fit_w[[index]]$lambda.min)
# set beta null
betaEst <- array(qLearnFit$fit$glmnet.fit$beta[,qLearnFit$fit$lambda==qLearnFit$fit$lambda.min], c(p,1))
betaNULL <- betaEst
betaNULL[index,1] <- 0
# get score under null
linkNULL <- qLearnFit$pseudoPredictor %*% betaNULL + qLearnFit$fit$glmnet.fit$a0[qLearnFit$fit$lambda==qLearnFit$fit$lambda.min]
scoreWeight <- qLearnFit$pseudoOutcome - linkNULL
tmpNULL <- -2*scoreWeight * (pseudoOutcome-link_w)
score[index] <- mean(tmpNULL)
# set betaAN
link <- qLearnFit$pseudoPredictor %*% betaEst + qLearnFit$fit$glmnet.fit$a0[qLearnFit$fit$lambda==qLearnFit$fit$lambda.min]
scoreWeight <- qLearnFit$pseudoOutcome - link
tmp <- -2 * scoreWeight * (pseudoOutcome-link_w)
I <- 2 * pseudoOutcome * (pseudoOutcome - link_w)
betaAN[index] <- betaEst[index]-mean(tmp)/(mean(I))
sigma[index] <- sqrt(mean(tmp^2))
sigmaAN[index] <- sigma[index]/(mean(I))
sigma[index] <- sqrt(mean(tmpNULL^2))
}
} else {
library(doParallel)
n_cores <- detectCores(all.tests = FALSE, logical = TRUE)
cl <- makeCluster(min(10, n_cores))
registerDoParallel(cl)
res <- foreach(index=indexToTest,.packages = 'glmnet') %dopar%{
pseudoPredictor <- qLearnFit$pseudoPredictor[,-index]
pseudoOutcome <- qLearnFit$pseudoPredictor[,index]
fit_w <- glmnet::cv.glmnet(x=pseudoPredictor, y=pseudoOutcome, intercept = intercept, standardize = TRUE)
link_w <- predict(fit_w, newx = pseudoPredictor, s=fit_w$lambda.min)
# set beta null
betaEst <- array(qLearnFit$fit$glmnet.fit$beta[,qLearnFit$fit$lambda==qLearnFit$fit$lambda.min], c(p,1))
betaNULL <- betaEst
betaNULL[index,1] <- 0
# get score under null
linkNULL <- qLearnFit$pseudoPredictor %*% betaNULL + qLearnFit$fit$glmnet.fit$a0[qLearnFit$fit$lambda==qLearnFit$fit$lambda.min]
scoreWeight <- qLearnFit$pseudoOutcome - linkNULL
tmpNULL <- -2 * scoreWeight * (pseudoOutcome-link_w)
score <- mean(tmpNULL)
# set betaAN
link <- qLearnFit$pseudoPredictor %*% betaEst + qLearnFit$fit$glmnet.fit$a0[qLearnFit$fit$lambda==qLearnFit$fit$lambda.min]
scoreWeight <- qLearnFit$pseudoOutcome - link
tmp <- -2 * scoreWeight * (pseudoOutcome-link_w)
I <- 2 * pseudoOutcome * (pseudoOutcome - link_w)
betaAN <- betaEst[index]-mean(tmp)/(mean(I))
sigma <- sqrt(mean(tmp^2))
sigmaAN <- sigma/(mean(I))
sigma <- sqrt(mean(tmpNULL^2))
list(fit_w = fit_w, score=score, sigma=sigma, betaAN=betaAN, sigmaAN=sigmaAN)
}
stopCluster(cl)
for (index in indexToTest){
fit_w[[index]] <- res[[index]]$fit_w
score[index] <- res[[index]]$score
betaAN[index] <- res[[index]]$betaAN
sigma[index] <- res[[index]]$sigma
sigmaAN[index] <- res[[index]]$sigmaAN
}
}
list(wFit = fit_w, score = score, sigma=sigma, pvalue=pnorm(-abs(sqrt(n)*score/sigma))*2, betaAN=betaAN, sigmaAN=sigmaAN)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.