library(matrixStats)
library(survival)
library(glmnet)
library(rqPen) ###rq.lasso.fit QICD
huber_cda <- function(X,Y,lambda,weights,method=c("huber", "tukey"),maxit=10^3,eps=1e-5,k_h=1.345, k_t=4.685,standardize=TRUE){
method <- match.arg(method)
n <- dim(X)[1]
p <- dim(X)[2]
x <- X
y <- Y
w <- weights/(sum(weights))
if (standardize == TRUE){
meanx = apply(x, 2, function(t){weighted.mean(t,w)})
x = scale(x, meanx, FALSE)
normx = apply(x, 2, function(t){sqrt(sum(w*t^2))})
x = scale(x, FALSE, normx)
meany = weighted.mean(y,w)
}
if (standardize == FALSE){
meanx = 0
normx = 1
}
iter <- 0
dif <- 1
fit <- rqPen::rq.lasso.fit(x,y,lambda=0,tau=0.5,intercept=T,weights=w,method="br")
beta <- fit$coefficients[-1]
a0 <- fit$coefficients[1]
w <- weights
while (iter <= maxit & dif >= eps){
beta_old <- beta
a0_old <- a0
for(j in 1:p){
r <- (y - a0 - x%*%as.matrix(beta))
sigma <- matrixStats::weightedMad(r,w)
r <- r/sigma
if (method == "huber"){
beta[j] <- St(2*sum(w*x[,j]^2)*beta_old[j]/sigma^2+sum(w*d.hb(r,k_h)*x[,j])/sigma,lambda/sigma)/(2*sum(w*x[,j]^2)/sigma^2)
} else if (method == "tukey") {
beta[j] <- St(2*sum(w*x[,j]^2)*beta_old[j]/sigma^2+sum(w*d.tk(r,k_t)*x[,j])/sigma,lambda/sigma)/(2*sum(w*x[,j]^2)/sigma^2)
}
}
r <- y - a0 - x%*%as.matrix(beta)
sigma <- matrixStats::weightedMad(r,w)
r <- r/sigma
if (method == "huber"){
a0 <- a0_old + sum(w*d.hb(r,k_h))/(2*sum(w))*sigma
} else if (method == "tukey") {
a0 <- a0_old + sum(w*d.tk(r,k_t))/(2*sum(w))*sigma
}
iter <- iter+1
dif <- max(abs(beta-beta_old),abs(a0-a0_old))
}
beta <- beta/normx
a0 <- a0 - sum(beta*meanx)
return(list(a0=a0, beta=beta, iter=iter, dif=dif))
}
###
bje_ly <- function(x, y, method=c("square", "absolute", "huber", "tukey", "quantile_huber"), k_h=1.345, k_t=4.685, lambda, standardize=TRUE, maxit_em=100, maxit_irls=1000, eps=1e-5){
method <- match.arg(method)
nobs <- NROW(x)
x <- cbind(matrix(1,nobs,1), x)
p <- NCOL(x)
beta_pre <- matrix(0, p, 1)
beta_store <- beta_pre
beta_local <- NULL
iter <- 1
dif <- 1
while (iter < maxit_em & dif >= eps){
iter <- iter + 1
eta <- y[,1] - x %*% beta_pre
order.eta <- order(eta)
eta.order <- eta[order.eta]
y.order <- y[order.eta,1]
state.order <- y[order.eta,2]
x.order <- x[order.eta,]
state.order[nobs] <- 1
newx <- x.order[state.order==1,]
newy <- y.order[state.order==1]
newweight <- newy * 0 + 1
eta.surv <- survival::Surv(1:length(eta.order), state.order)
km.eta <- survival::survfit(eta.surv~1)
weight.low <- km.eta$surv
weight.up <- diff(-c(1, km.eta$surv))
################# data augmentation ###############
repeats <- rev(cumsum(rev(state.order)))[state.order==0]
newx.add <- apply(x.order[state.order==0,,drop = FALSE],2,function(t){rep(t,repeats)})
y.order.list <- as.list(as.data.frame(t(cbind((1:nobs)[state.order==0], repeats))))
addy <- function(t){
res <- rep(x.order[t[1],,drop = FALSE] %*% beta_pre, t[2]) + eta.order[((t[1]+1):nobs)[state.order[(t[1]+1):nobs]==1]]
res
}
newy.list.add <- lapply(y.order.list,addy)
newy.add <- unlist(newy.list.add, use.names = FALSE)
addw <- function(t){
res <- weight.up[(t[1]+1):nobs]/weight.low[t[1]]
res[res>0]
}
newweight.list.add <- lapply(y.order.list, addw)
newweight.add <- unlist(newweight.list.add, use.names = FALSE)
newx <- rbind(newx, newx.add)
newy <- c(newy, newy.add)
newweight <- c(newweight, newweight.add)
if (method == "square"){
fit <- glmnet::glmnet(newx[,-1], newy, family="gaussian", weights=newweight, alpha=1, lambda=lambda/2/sum(newweight), standardize=standardize, intercept=T)
beta <- c(fit$a0, as.numeric(fit$beta))
dif <- min(apply(beta_store, 2, function(t){max(abs(beta - t))}))
beta_store <- cbind(beta_store,beta)
beta_pre <- beta
} else if (method == "absolute"){
fit <- rqPen::rq.lasso.fit(newx[,-1], newy, lambda=lambda/2/length(newweight), tau=0.5,intercept=T, weights=newweight,method="br")
beta <- fit$coefficients
dif <- min(apply(beta_store, 2, function(t){max(abs(beta - t))}))
beta_store <- cbind(beta_store,beta)
beta_pre <- beta
} else if (method == "huber"){
fit <- huber_cda(X=newx[,-1],Y=newy,lambda=lambda,weights=newweight,method="huber",standardize=standardize)
beta <- c(fit$a0,fit$beta)
dif <- min(apply(beta_store, 2, function(t){max(abs(beta - t))}))
beta_store <- cbind(beta_store,beta)
beta_pre <- beta
} else if (method == "tukey"){
fit <- huber_cda(X=newx[,-1],Y=newy,lambda=lambda,weights=newweight,method="tukey",standardize=standardize)
beta <- c(fit$a0,fit$beta)
dif <- min(apply(beta_store, 2, function(t){max(abs(beta - t))}))
beta_store <- cbind(beta_store,beta)
beta_pre <- beta
}
#print(iter)
#print(dif)
}
if (dif < eps){
loc <- which.min(apply(beta_store[,1:(iter-1)], 2, function(t){max(abs(beta - t))}))
beta_local <- beta_store[,loc:iter]
} else { beta_local <- beta }
if (NCOL(beta_local) > 1){
beta_final <- beta_local[,NCOL(beta_local)]
beta_final_mean <- rowMeans(beta_local)
} else { beta_final <- beta_local
beta_final_mean <- beta_local }
select <- (abs(beta_final)>eps)
#print(select)
#if (lambda!=0 & sum(select[-1])>1){
# x.nointercept <- x[,-1]
# refit <- bje_ly(x.nointercept[,select[-1]], y, method, k_h, k_t, lambda=0, standardize = FALSE)
# beta_refit <- 0 * beta_final
# beta_refit[select] <- refit$beta
#} else {
# beta_refit <- beta_final
#}
if (sum(select[-1])>1){
x.nointercept <- x[,-1]
refit <- bje_refit(x.nointercept[,select[-1]], y, method, k_h=k_h, k_t=k_t, maxit_em=maxit_em, eps=eps)
beta_refit <- 0 * beta_final
beta_refit[select] <- refit$beta
beta_refit_mean <- 0 * beta_final
beta_refit_mean[select] <- refit$beta_mean
} else {
beta_refit <- beta_final
beta_refit_mean <- beta_final
}
select_beta <- (abs(beta_final[-1])>eps)
return(list(beta=beta_final,beta_mean=beta_final_mean,beta_local=beta_local,
beta_refit=beta_refit,beta_refit_mean=beta_refit_mean,
select=select_beta,iter=iter))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.