context("Vegetation analysis")
test_that("CountSpeciesDetected returns a dataframe of species found in LPI canopy vs species inventory", {
expected <- tibble::tibble(Park = c("LAKE", "LAKE", "LAKE"),
SpringCode = c("LAKE_P_BLUE0", "LAKE_P_BLUE0", "LAKE_P_BLUE0"),
SpringName = c("Blue Point", "Blue Point", "Blue Point"),
FieldSeason = c("2019", "2019", "2019"),
TransectNumber = as.integer(c(0, 1, 2)),
LPISpeciesCount = as.integer(c(1, 1, 2)),
InventorySpeciesCount = as.integer(c(2, 3, 1)))
expect_mapequal(CountSpeciesDetected(path.to.data = "./dummy-data/veg-analysis", data.source = "local"), expected)
})
test_that("CountSpeciesByStratum returns a dataframe of species counts by stratum", {
expected <- tibble::tibble(Park = c("LAKE", "LAKE", "LAKE", "LAKE", "LAKE", "LAKE", "LAKE", "LAKE", "LAKE"),
SpringCode = c("LAKE_P_BLUE0", "LAKE_P_BLUE0", "LAKE_P_BLUE0", "LAKE_P_BLUE0", "LAKE_P_BLUE0", "LAKE_P_BLUE0", "LAKE_P_BLUE0", "LAKE_P_BLUE0", "LAKE_P_BLUE0"),
SpringName = c("Blue Point", "Blue Point", "Blue Point", "Blue Point", "Blue Point", "Blue Point", "Blue Point", "Blue Point", "Blue Point"),
FieldSeason = c("2019", "2019", "2019", "2019", "2019", "2019", "2019", "2019", "2019"),
TransectNumber = as.integer(c(0, 0, 0, 1, 1, 1, 2, 2, 2)),
Stratum = c("T", "M", "B", "T", "M", "B", "T", "M", "B"),
SpeciesCount = as.integer(c(0, 1, 1, 0, 1, 1, 0, 0, 2)))
expect_mapequal(CountSpeciesByStratum(path.to.data = "./dummy-data/veg-analysis", data.source = "local"), expected)
})
test_that("CanopyPercentCover correctly computes the canopy cover for each transect", {
expected <- tibble::tibble(Park = c("LAKE", "LAKE", "LAKE"),
SpringCode = c("LAKE_P_BLUE0", "LAKE_P_BLUE0", "LAKE_P_BLUE0"),
SpringName = c("Blue Point", "Blue Point", "Blue Point"),
FieldSeason = c("2019", "2019", "2019"),
TransectNumber = as.integer(c(0, 1, 2)),
CanopyCover_percent = c(66.7, 66.7, 66.7))
expect_mapequal(CanopyPercentCover(path.to.data = "./dummy-data/veg-analysis", data.source = "local"), expected)
})
test_that("CalculateSpeciesAccumulation correctly creates a table of speccaccum output for use in figure", {
expected <- tibble::tibble(Park = c("LAKE", "LAKE", "LAKE"),
SpringCode = c("LAKE_P_BLUE0", "LAKE_P_BLUE0", "LAKE_P_BLUE0"),
SpringName = c("Blue Point", "Blue Point", "Blue Point"),
FieldSeason = c("2019", "2019", "2019"),
Transects = c(1.09, 1.91, 3),
StDev = c(0.58, 0.74, 0),
Richness = c(3.48, 5.30, 7))
actual <- CalculateSpeciesAccumulation(path.to.data = "./dummy-data/veg-analysis", data.source = "local", spring = "LAKE_P_BLUE0", field.season = "2019")
actual %<>% dplyr::mutate(Transects = round(Transects, 2), StDev = round(StDev, 2), Richness = round(Richness, 2))
expect_mapequal(actual, expected)
})
test_that("TreePresenceAbsence correctly reports the number of transects with and without trees", {
expected <- tibble::tibble(Park = "LAKE",
SpringCode = c("LAKE_P_HOR0042", "LAKE_P_ROGE0"),
SpringName = c("Horsethief Canyon", "Rogers"),
FieldSeason = "2019",
NTransectsWithTrees = as.integer(c(1, 3)),
NTransectsNoTrees = as.integer(c(2, 0)))
expect_mapequal(TreePresenceAbsence(path.to.data = "./dummy-data/veg-analysis", data.source = "local"), expected)
expect_mapequal(TreePresenceAbsence(path.to.data = "./dummy-data/veg-analysis", data.source = "local", spring = "LAKE_P_ROGE0"), expected[2,])
})
test_that("WaterPercentCover correctly computes the water percent cover for each transect", {
expected <- tibble::tibble(Park = "LAKE",
SpringCode = "LAKE_P_ROGE0",
SpringName = "Rogers",
FieldSeason = "2019",
TransectNumber = as.integer(c(1, 2)),
WaterCover_percent = c(66.7, 0))
expect_mapequal(WaterPercentCover(path.to.data = "./dummy-data/veg-analysis/water", data.source = "local"), expected)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.