pxgdlogisticlasso <- function(par, X, y, n.trials=rep(1, length(y)), weights=NULL,
lambda=NULL, intermed=FALSE, control=list()) {
## This is like the "GEM" algorithm
control.default <- list(maxiter=2000, tol=1e-7, method="Newton", objfn.track=TRUE)
namc <- names(control)
if (!all(namc %in% names(control.default))) {
stop("unknown names in control: ", namc[!(namc %in% names(control.default))])
}
control <- modifyList(control.default, control)
maxiter <- control$maxiter
tol <- control$tol
method <- control$method
track.objective <- control$objfn.track
beta.init <- par
if(is.null(weights)) {
weights <- rep(1, length(y))
}
svec <- weights
stplngth <- (2/norm(X, type="2"))^2
beta.init <- par
beta.old <- beta.init
iter <- 0
phi <- as.numeric(X%*%beta.old)
ww <- rep(0, length(y))
XSty <- crossprod(X, svec*y)
LogLikObserved <- function(x.theta, bet) {
sum(y*svec*x.theta + n.trials*svec*plogis(-x.theta, log=TRUE)) - lambda*sum(abs(bet))
}
ScoreObserved <- function(rho, x.theta, bet, lambda) {
-sum(svec*x.theta*(y - n.trials*plogis(rho*x.theta) )) + lambda*rho*sum(abs(bet))
}
BetaMat <- NULL
if(intermed) {
BetaMat <- matrix(0, nrow=maxiter + 1, ncol=length(beta.init))
BetaMat[1,] <- beta.init
}
if(track.objective) {
objfn.track = rep(NA, maxiter + 1)
objfn.track[1] <- LogLikObserved(phi, beta.init)
}
rho.old <- 1
while(TRUE) {
## Compute weight vector
phat <- plogis(phi) # This is expit(phi)
#ww <- svec*ww
## How to incorporate the weights?
theta <- SoftThresh(beta.old + stplngth*(XSty - crossprod(X, svec*phat)), lambda=lambda*stplngth)
iter <- iter + 1
x.theta <- as.numeric(X%*%theta)
rho.pos <- UpdateRhoNewtonL1(1, x.theta, y, n.trials, l1norm=lambda*sum(abs(theta)),
tol.newton=0.01*tol, svec=svec)
# rho.neg <- UpdateRhoNewton(1, x.theta, y, n.trials, cc=-lambda*sum(abs(theta)), tol.newton=0.01*tol)
if(rho.pos > 0) {
rho.new <- rho.pos
} else if(rho.pos < 0) {
rho.new <- 0
}
beta.new <- as.numeric(rho.new*theta)
if(norm(beta.new-beta.old, "2") < tol | iter >= maxiter) break
beta.old <- beta.new
phi <- as.numeric(X%*%beta.old)
rho.old <- rho.new
if(track.objective) {
objfn.track[iter+1] <- LogLikObserved(phi, beta.old)
}
if(intermed) {
BetaMat[iter+1,] <- beta.new
}
}
if(track.objective) {
objfn.track <- objfn.track[!is.na(objfn.track)]
} else {
objfn.track <- NULL
}
if(intermed) {
BetaMat <- BetaMat[!is.na(objfn.track),]
}
return(list(coef=beta.new, iter=iter, objfn.track=objfn.track, intermed=BetaMat))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.