#
#
# create temporary file containing the data
#
#
#scalefs0 <- 25
#
# Scalefactor for images to avoid discritisation problems
#
cat("Using data set 3 \n")
bvec <- t(bvec)
btb <- matrix(0,6,dim(bvec)[2])
btb[1,] <- bvec[1,]*bvec[1,]*bvalue/1000
btb[4,] <- bvec[2,]*bvec[2,]*bvalue/1000
btb[6,] <- bvec[3,]*bvec[3,]*bvalue/1000
btb[2,] <- 2*bvec[1,]*bvec[2,]*bvalue/1000
btb[3,] <- 2*bvec[1,]*bvec[3,]*bvalue/1000
btb[5,] <- 2*bvec[2,]*bvec[3,]*bvalue/1000
# a useful function to create a tensor of specified anisotropy
eta <- function(ai){
aindex <- function(tensor){
values <- eigen(matrix(tensor[c(1,2,3,2,4,5,3,5,6)],3,3))$values
sqrt(3/2*sum((values-mean(values))^2)/sum(values^2))
}
risk <- function(par,ai) (ai-aindex((1-par)*c(1,0,0,0,0,0)+par*c(1,0,0,1,0,1)))^2
optimize(f = risk, interval = c(0,1),ai=ai)$minimum
}
#
# create Phantom data
#
etas <- numeric(2001)
for(i in 1:2001) etas[i] <- .9
dtiso <- array(c(1,0,0,1,0,1),dim=c(6,ddim))
phi <- (1:1000)*6*pi/1000
etai <- .2
phi <- (1:2000)*7.6*pi/2000
rad1 <- 20
rad2 <- 21
h <- 1
for(rad in seq(rad1,rad2,.5)){
sphi <- sin(phi)
cphi <- cos(phi)
x <- as.integer(rad*sphi+32.5)
y <- as.integer(rad*cphi+32.5)
z <- as.integer(pmax(1,pmin(26,h*phi+1)))
for(i in 1:2000) dtiso[,x[i],y[i],z[i]] <-
(1-etai)*c(cphi[i]^2,-sphi[i]*cphi[i],2.5*h/rad*cphi[i],
sphi[i]^2,-2.5*h/rad*sphi[i],(2.5*h/rad)^2)+etai*c(1,0,0,1,0,1)
for(i in 1:2000) dtiso[,x[i],y[i],z[i]+1] <-
(1-etai)*c(cphi[i]^2,-sphi[i]*cphi[i],2.5*h/rad*cphi[i],
sphi[i]^2,-2.5*h/rad*sphi[i],(2.5*h/rad)^2)+etai*c(1,0,0,1,0,1)
}
for(rad in seq(rad1,rad2,.5)){
sphi <- sin(phi)
cphi <- cos(phi)
x <- as.integer(rad*sphi+32.5)
y <- as.integer(rad*cphi+32.5)
z <- as.integer(pmax(1,pmin(26,h*phi+1.5)))
for(i in 1:2000) dtiso[,x[i],y[i],z[i]] <-
(1-etai)*c(cphi[i]^2,-sphi[i]*cphi[i],2.5*h/rad*cphi[i],
sphi[i]^2,-2.5*h/rad*sphi[i],(2.5*h/rad)^2)+etai*c(1,0,0,1,0,1)
for(i in 1:2000) dtiso[,x[i],y[i],z[i]+1] <-
(1-etai)*c(cphi[i]^2,-sphi[i]*cphi[i],2.5*h/rad*cphi[i],
sphi[i]^2,-2.5*h/rad*sphi[i],(2.5*h/rad)^2)+etai*c(1,0,0,1,0,1)
}
for(rad in seq(rad1,rad2,.5)){
sphi <- sin(phi)
cphi <- cos(phi)
x <- as.integer(rad*sphi+32.5)
y <- as.integer(rad*cphi+32.5)
z <- as.integer(pmax(1,pmin(26,h*phi+2)))
for(i in 1:2000) dtiso[,x[i],y[i],z[i]] <-
(1-etai)*c(cphi[i]^2,-sphi[i]*cphi[i],2.5*h/rad*cphi[i],
sphi[i]^2,-2.5*h/rad*sphi[i],(2.5*h/rad)^2)+etai*c(1,0,0,1,0,1)
for(i in 1:2000) dtiso[,x[i],y[i],z[i]+1] <-
(1-etai)*c(cphi[i]^2,-sphi[i]*cphi[i],2.5*h/rad*cphi[i],
sphi[i]^2,-2.5*h/rad*sphi[i],(2.5*h/rad)^2)+etai*c(1,0,0,1,0,1)
}
# now we want to view the projection of the zylinders onto a plane
# reset S0 image
s0offa <- read.table(system.file("dat/S0ofFA.txt",package="dti"))
s0 <- array(s0offa[450,2]*scalefs0+rnorm(prod(ddim)),ddim)
# create noisy data
createdata.dti <- function(file,dtensor,btb,s0,sigma,level=250){
ngrad <- dim(btb)[2]
ddim <- dim(s0)
dim(dtensor)<-c(6,prod(ddim))
dtensor <- t(dtensor)
si <- exp(-dtensor%*%btb)*as.vector(s0)
dim(si)<-c(ddim,ngrad)
for (j in 1:ngrad) {
for (i in 1:ddim[3]) {
si[,,i,j] <- abs(fft(fft(si[,,i,j])+complex(real=rnorm(ddim[1]*ddim[2],0,sigma),imaginary=rnorm(ddim[1]*ddim[2],0,sigma)),inverse=TRUE))/ddim[1]/ddim[2]
}
}
con <- file(file,"wb")
writeBin(as.integer(si),con,2)
close(con)
}
# create phantom - object
tmpfile1 <- tempfile("S_all")
createdata.dti(tmpfile1,dtiso,btb,s0,1)
# create noisy data
cat("Creating noisy data with standard deviation ",sigma,"\n")
#set.seed(1)
tmpfile2 <- tempfile("S_noise_all")
createdata.dti(tmpfile2,dtiso,btb,s0,scalefs0*sigma)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.