#' Day 14: Extended Polymerization
#'
#' [Extended Polymerization](https://adventofcode.com/2021/day/14)
#'
#' @name day14
#' @rdname day14
#' @details
#'
#' **Part One**
#'
#' The incredible pressures at this depth are starting to put a strain on
#' your submarine. The submarine has
#' [polymerization](https://en.wikipedia.org/wiki/Polymerization) equipment
#' that would produce suitable materials to reinforce the submarine, and
#' the nearby volcanically-active caves should even have the necessary
#' input elements in sufficient quantities.
#'
#' The submarine manual contains [instructions]{title="HO
#'
#' HO -> OH"} for finding the optimal polymer formula; specifically, it
#' offers a *polymer template* and a list of *pair insertion* rules (your
#' puzzle input). You just need to work out what polymer would result after
#' repeating the pair insertion process a few times.
#'
#' For example:
#'
#' NNCB
#'
#' CH -> B
#' HH -> N
#' CB -> H
#' NH -> C
#' HB -> C
#' HC -> B
#' HN -> C
#' NN -> C
#' BH -> H
#' NC -> B
#' NB -> B
#' BN -> B
#' BB -> N
#' BC -> B
#' CC -> N
#' CN -> C
#'
#' The first line is the *polymer template* - this is the starting point of
#' the process.
#'
#' The following section defines the *pair insertion* rules. A rule like
#' `AB -> C` means that when elements `A` and `B` are immediately adjacent,
#' element `C` should be inserted between them. These insertions all happen
#' simultaneously.
#'
#' So, starting with the polymer template `NNCB`, the first step
#' simultaneously considers all three pairs:
#'
#' - The first pair (`NN`) matches the rule `NN -> C`, so element `C` is
#' inserted between the first `N` and the second `N`.
#' - The second pair (`NC`) matches the rule `NC -> B`, so element `B` is
#' inserted between the `N` and the `C`.
#' - The third pair (`CB`) matches the rule `CB -> H`, so element `H` is
#' inserted between the `C` and the `B`.
#'
#' Note that these pairs overlap: the second element of one pair is the
#' first element of the next pair. Also, because all pairs are considered
#' simultaneously, inserted elements are not considered to be part of a
#' pair until the next step.
#'
#' After the first step of this process, the polymer becomes `NCNBCHB`.
#'
#' Here are the results of a few steps using the above rules:
#'
#' Template: NNCB
#' After step 1: NCNBCHB
#' After step 2: NBCCNBBBCBHCB
#' After step 3: NBBBCNCCNBBNBNBBCHBHHBCHB
#' After step 4: NBBNBNBBCCNBCNCCNBBNBBNBBBNBBNBBCBHCBHHNHCBBCBHCB
#'
#' This polymer grows quickly. After step 5, it has length 97; After step
#' 10, it has length 3073. After step 10, `B` occurs 1749 times, `C` occurs
#' 298 times, `H` occurs 161 times, and `N` occurs 865 times; taking the
#' quantity of the most common element (`B`, 1749) and subtracting the
#' quantity of the least common element (`H`, 161) produces
#' `1749 - 161 = 1588`.
#'
#' Apply 10 steps of pair insertion to the polymer template and find the
#' most and least common elements in the result. *What do you get if you
#' take the quantity of the most common element and subtract the quantity
#' of the least common element?*
#'
#' **Part Two**
#'
#' *(Use have to manually add this yourself.)*
#'
#' *(Try using `convert_clipboard_html_to_roxygen_md()`)*
#'
f14_get_template <- function(x) {
return(x[1])
}
f14_get_rule <- function(x) {
x %>%
stringr::str_subset(pattern = "->") %>%
stringr::str_split("->", simplify = TRUE) %>%
`colnames<-`(c("search", "insertion")) %>%
tibble::as_tibble() %>%
dplyr::mutate_all(stringr::str_trim)
}
get_subt <- function(string, n) {
stringr::str_sub(string, n, n+1)
}
insert_step <- function(string, rules) {
N <- nchar(string)
string %>%
get_subt(1:N) %>%
tibble::as_tibble() %>%
#df %>%
dplyr::left_join({
rules %>%
dplyr::mutate(insertion = stringr::str_c(stringr::str_sub(search, 1, 1), insertion))
}, by = c("value" = "search")) %>%
dplyr::mutate(insertion = dplyr::if_else(is.na(insertion), value, insertion)) %>%
dplyr::pull(insertion) %>%
stringr::str_c(collapse = "")
}
insert_n_steps <- function(string, rules, n, print = FALSE) {
out <- string
for(i in seq_len(n)) {
out <- df_insert(out, rules)
print(i)
if(print) print(out)
}
return(out)
}
count_string <- function(string) {
letters <- string %>%
stringr::str_split(pattern = "", simplify = TRUE) %>%
as.vector() %>%
unique()
df <- tibble::tibble(LETTER = letters,
COUNT = stringr::str_count(string, letters))
return(df)
}
matrix_exp <- function(matrix, n) {
stopifnot(n > 1)
for(i in seq_len(n-1)) {
if(i == 1) {
result <- matrix %*% matrix
} else{
result <- result %*% matrix
}
}
return(result)
}
#' @param x some data
#' @return For Part One, `f14a(x)` returns .... For Part Two,
#' `f14b(x)` returns ....
#' @export
#' @examples
#' f14a(example_data_14())
#' f14b()
f14a <- function(x) {
r <- f14_get_rule(x)
string <- f14_get_template(x)
output <- insert_n_steps(string, r, 10)
count_string(output) %>%
dplyr::arrange(desc(COUNT)) %>%
dplyr::summarise(solution = diff(range(COUNT)))
}
#' @rdname day14
#' @export
f14b <- function(x, n = 40) {
rules <- f14_get_rule(x)
string <- f14_get_template(x)
rules <- rules %>%
mutate(new_pair_l = stringr::str_c(stringr::str_sub(search, 1, 1), insertion),
new_pair_r = stringr::str_c(insertion, stringr::str_sub(search, 2, 2)))
pairs <- rules$search
num_pairs <- length(pairs)
m <- matrix(0, num_pairs, num_pairs, dimnames = list(pairs, pairs))
m[cbind(pairs, rules$new_pair_l)] <- 1
m[cbind(pairs, rules$new_pair_r)] <- 1
#m[cbind(rules$search, rules$new_pair_r)] <- m[cbind(rules$search, rules$new_pair_r)] + 1
patterns_present <- stringr::str_count(string = string, pattern = possible_pairs)
counts <- patterns_present %*% matrix_exp(m, n)
first_string_char <- stringr::str_sub(string, 1, 1)
tibble(n = c(counts), pair = colnames(counts)) %>%
mutate(second_char = stringr::str_sub(pair, 2, 2)) %>%
group_by(second_char) %>%
summarise(n = sum(n)) %>%
mutate(n = if_else(second_char == first_string_char, n+1, n)) %>%
summarise(solution = diff(range(n)))
}
#' @param example Which example data to use (by position or name). Defaults to
#' 1.
#' @rdname day14
#' @export
example_data_14 <- function(example = 1) {
l <- list(
a = c(
"NNCB",
"CH -> B",
"HH -> N",
"CB -> H",
"NH -> C",
"HB -> C",
"HC -> B",
"HN -> C",
"NN -> C",
"BH -> H",
"NC -> B",
"NB -> B",
"BN -> B",
"BB -> N",
"BC -> B",
"CC -> N",
"CN -> C"
)
)
l[[example]]
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.