# _targets.R
# setup -------------------------------------------------------------------
devtools::load_all()
library(targets)
library(tarchetypes)
invisible(
lapply(
list.files(path = "R", pattern = "\\.R$", full.names = TRUE),
source
)
)
conflicted::conflict_prefer("filter", "dplyr")
options(
tidyverse.quiet = TRUE,
usethis.quiet = TRUE
)
future::plan(future.callr::callr(workers = future::availableCores() - 1))
# target-specific options
tar_option_set(
packages = c("tidyverse", "patchwork"),
# packages = c("tidyverse", "patchwork", "xcms"),
imports = c("rnaseq.lf.hypoxia.molidustat"),
format = "qs"
)
# values <- tibble::tibble(
# polarity = c("positive", "negative"),
# names = c("pos", "neg")
# )
# list of targets ---------------------------------------------------------
list(
# dna per cell ------------------------------------------------------------
tar_target(
dna_per_cell_file,
path_to_data("dna-per-cell-number.xlsx"),
format = "file"
),
tar_target(
dna_per_cell_raw,
clean_dna_per_cell(dna_per_cell_file)
),
tar_target(
dna_per_cell_std,
make_std_curves(dna_per_cell_raw)
),
tar_target(
dna_per_cell_clean,
interp_data(dna_per_cell_raw, dna_per_cell_std)
),
tar_target(
cells_per_dna,
calculate_cells_per_dna(dna_per_cell_clean)
),
tar_render(
dna_per_cell_report,
path = path_to_reports("dna-per-cell.Rmd"),
output_dir = system.file("analysis/pdfs", package = "Copeland.2021.hypoxia.flux")
),
# extracellular fluxes ----------------------------------------------------
tar_target(
fluxes_meta_files,
path_to_data("(lf|pasmc)_.*_meta\\.csv"),
format = "file"
),
tar_target(
fluxes_meta,
clean_flux_meta(fluxes_meta_files)
),
tar_target(
fluxes_data_files,
path_to_data("(lf|pasmc)_.*_[a-z]_\\d{4}-\\d{2}-\\d{2}\\.xlsx"),
format = "file"
),
tar_target(
fluxes_data,
assemble_flux_data(fluxes_data_files)
),
tar_target(
conc_raw,
clean_fluxes(fluxes_data)
),
tar_target(
conc_std,
make_std_curves(conc_raw)
),
tar_target(
conc_std_plots,
print_plots(conc_std$plots, conc_std$title, "fluxes/01_standard_curves"),
format = "file"
),
tar_target(
conc_std_clean_fld,
make_std_curves(dplyr::filter(conc_raw, !(detector == "fld" & conc > 900)))
),
tar_target(
conc_std_clean,
clean_flux_std(conc_raw)
),
tar_target(
conc_interp,
interp_data(conc_raw, conc_std_clean)
),
tar_target(
conc_with_missing,
fill_missing_fluxes(conc_interp, fluxes_meta)
),
tar_target(
conc_clean,
filter_assays(conc_with_missing)
),
tar_target(
evap_raw,
assemble_evap_data(fluxes_data)
),
tar_target(
evap_clean,
fill_missing_evap(evap_raw, conc_clean)
),
tar_target(
flux_measurements,
assemble_flux_measurements(conc_clean, evap_clean)
),
tar_target(
growth_curves,
plot_growth_curves(flux_measurements)
),
tar_target(
growth_curve_plots,
print_plots(growth_curves$plots, growth_curves$title, "fluxes/02_growth_curves"),
format = "file"
),
tar_target(
growth_rates,
calculate_growth_rates(growth_curves)
),
tar_target(
degradation_curves,
plot_degradation_curves(flux_measurements)
),
tar_target(
degradation_curve_plots,
print_plots(degradation_curves$plots, degradation_curves$title, "fluxes/03_degradation_curves"),
format = "file"
),
tar_target(
degradation_rates,
calculate_degradation_rates(degradation_curves)
),
tar_target(
k,
clean_degradation_rates(degradation_rates)
),
tar_target(
mass_curves,
plot_mass_curves(flux_measurements)
),
tar_target(
mass_curve_plots,
print_plots(mass_curves$plots, mass_curves$title, "fluxes/04_mass_curves"),
format = "file"
),
tar_target(
flux_curves,
plot_flux_curves(mass_curves, k, growth_rates)
),
tar_target(
flux_curve_plots,
print_plots(flux_curves$plots, flux_curves$title, "fluxes/05_flux_curves"),
format = "file"
),
tar_target(
fluxes,
calculate_fluxes(flux_curves)
),
# tar_target(
# fluxes_pairwise_annot,
# annot_pairwise(fluxes)
# ),
tar_render(
extracellular_fluxes_report,
path = path_to_reports("extracellular-fluxes.Rmd"),
output_dir = system.file("analysis/pdfs", package = "Copeland.2021.hypoxia.flux")
),
# q bias correction -------------------------------------------------------
tar_target(
qbias_files,
path_to_data("q-bias-correction"),
format = "file"
),
tar_target(
qbias_ratios,
import_qbias(qbias_files)
),
tar_target(
pred_ratios,
calculate_predicted_ratios()
),
tar_target(
correction_factors,
calculate_correction_factors(qbias_ratios, pred_ratios)
),
tar_render(
qbias_correction_factor_report,
path = path_to_reports("qbias-correction-factors.Rmd"),
output_dir = system.file("analysis/pdfs", package = "Copeland.2021.hypoxia.flux")
),
# mass isotopomer distributions -------------------------------------------
tar_target(
mid_files,
path_to_data("(a|b)_(fs|sim)_(lf|pasmc)_.*\\.csv"),
format = "file"
),
tar_target(
mid_clean,
clean_mids(mid_files)
),
tar_target(
mid_correct,
correct_mid(mid_clean)
),
tar_target(
mids,
remove_mid_outliers(mid_correct)
),
tar_target(
mid_curves,
plot_mid_curves(mids)
),
tar_target(
mid_curve_plots,
print_plots(mid_curves$plots, mid_curves$title, "mids"),
format = "file"
),
tar_render(
mid_report,
path = path_to_reports("mass-isotope-distributions.Rmd"),
output_dir = system.file("analysis/pdfs", package = "Copeland.2021.hypoxia.flux")
),
tar_target(
pasmc_m5,
get_m5_citrate(pruned_mids)
),
# biomass -----------------------------------------------------------------
tar_target(
biomass_file,
path_to_data("cell-mass.csv"),
format = "file"
),
tar_target(
biomass_clean,
clean_biomass(biomass_file)
),
tar_target(
biomass,
calculate_biomass(biomass_clean)
),
tar_target(
biomass_equations,
calculate_biomass_equations(biomass)
),
tar_target(
biomass_equations_out,
write_matlab_input(biomass_equations, coefs, "_biomass.csv"),
format = "file"
),
tar_render(
biomass_report,
path = path_to_reports("biomass.Rmd"),
output_dir = system.file("analysis/pdfs", package = "Copeland.2021.hypoxia.flux")
),
# matlab input ------------------------------------------------------------
tar_target(
reactions_file,
path_to_reports("modeling/matlab-input/reactions.csv"),
format = "file"
),
tar_target(
model_reactions,
format_reactions(reactions_file)
),
tar_target(
model_fluxes,
format_fluxes(growth_rates, fluxes)
),
tar_target(
model_fluxes_out,
write_matlab_input(model_fluxes, data, "_fluxes.csv"),
format = "file"
),
tar_target(
pruned_mids,
format_mids(mids)
),
tar_target(
model_mids,
summarize_mids(pruned_mids)
),
tar_target(
model_mids_out,
write_matlab_input(model_mids, data, "_mids.csv"),
format = "file"
),
# cell viability ----------------------------------------------------------
tar_target(
viability_file,
path_to_data("cell-viability.csv"),
format = "file"
),
tar_target(
viability,
clean_viability(viability_file)
),
# immunoblots -------------------------------------------------------------
tar_target(
blot_files,
path_to_data("immunoblots"),
format = "file"
),
tar_target(
blot_raw,
read_data(blot_files)
),
tar_target(
blot_norm,
normalize_densities(blot_raw)
),
# mrna --------------------------------------------------------------------
tar_target(
mrna_files,
path_to_data("mrna"),
format = "file"
),
tar_target(
mrna_raw,
read_data(mrna_files)
),
tar_target(
mrna_norm,
normalize_qpcr(mrna_raw)
),
# model fluxes ------------------------------------------------------------
tar_target(
map_flux_files,
path_to_data("model"),
format = "file"
),
tar_target(
map_fluxes,
clean_model_fluxes(map_flux_files, model_reactions)
),
tar_target(
map_flux_differences,
assemble_flux_differences(map_fluxes)
),
tar_render(
map_flux_difference_report,
path = path_to_reports("flux-differences.Rmd"),
output_dir = system.file("analysis/pdfs", package = "Copeland.2021.hypoxia.flux")
),
# NAD assay ---------------------------------------------------------------
tar_target(
nad_files,
path_to_data("nad-assay_.*\\.xlsx"),
format = "file"
),
tar_target(
nad_data,
assemble_flux_data(nad_files)
),
tar_target(
nad_raw,
clean_nad(nad_data)
),
tar_target(
nad_conc_std,
make_std_curves(nad_raw, fo = ~MASS::rlm(value ~ poly(conc, 2, raw = TRUE), data = .x))
),
tar_target(
nad_conc_std_plots,
print_plots(nad_conc_std$plots, nad_conc_std$title, "nad/01_standard_curves"),
format = "file"
),
tar_target(
nad_interp,
interp_data(nad_raw, nad_conc_std)
),
tar_target(
nad_final,
finalize_nad(nad_interp, cells_per_dna)
),
tar_target(
nad_annot,
annot_nad(nad_final)
),
# RNA-seq -----------------------------------------------------------------
tar_target(
dds,
count_rnaseq()
),
tar_target(
pca_data,
vst_rnaseq(dds)
),
tar_target(
rnaseq_pca,
plot_rnaseq_pca(pca_data)
),
tar_target(
rnaseq_different_differences,
identify_deg(dds, expr((h.dmso - n.dmso) - (n.bay - n.dmso)))
),
tar_target(
rnaseq_hyp,
identify_deg(dds, expr((h.dmso - n.dmso)))
),
tar_target(
rnaseq_bay,
identify_deg(dds, expr((n.bay - n.dmso)))
),
tar_target(
rnaseq_hyp_bay,
identify_deg(dds, expr((h.bay - n.bay)))
),
tar_target(
rnaseq_volcano,
plot_rnaseq_volcano(rnaseq_different_differences, xlab = "ΔHypoxia/ΔBAY", gois = c("EPAS1","HDAC9", "P4HA2", "RBM3"))
),
tar_target(
rnaseq_hyp_volcano,
plot_rnaseq_volcano(rnaseq_hyp, xlab = "Hypoxia/Normoxia")
),
tar_target(
rnaseq_bay_volcano,
plot_rnaseq_volcano(rnaseq_bay, xlab = "BAY/DMSO")
),
tar_target(
rnaseq_hyp_bay_volcano,
plot_rnaseq_volcano(rnaseq_hyp_bay, xlab = "Hypoxia/Normoxia")
),
tar_target(
rnaseq_overlap,
find_rnaseq_overlap(dds)
),
tar_target(
rnaseq_venn,
plot_rnaseq_venn(rnaseq_overlap, "Transcripts")
),
tar_target(
rnaseq_gsea,
run_gsea(rnaseq_different_differences)
),
tar_target(
rnaseq_hyp_gsea,
run_gsea(rnaseq_hyp)
),
tar_target(
rnaseq_bay_gsea,
run_gsea(rnaseq_bay)
),
tar_target(
rnaseq_hyp_bay_gsea,
run_gsea(rnaseq_hyp_bay)
),
tar_target(
rnaseq_goi,
plot_rnaseq_goi(dds_symbols, c("EPAS1", "P4HA2", "RBM3", "HDAC9"))
),
tar_target(
rnaseq_gsea_plot,
plot_gsea(rnaseq_gsea, "HALLMARK", lbls = c("With BAY", "With Hypoxia"), vals = unname(clrs[c(4, 2)]))
),
tar_target(
rnaseq_hyp_gsea_plot,
plot_gsea(rnaseq_hyp_gsea, "HALLMARK", lbls = c("Down in Hypoxia", "Up in Hypoxia"), vals = unname(clrs[c(1, 2)]))
),
tar_target(
rnaseq_bay_gsea_plot,
plot_gsea(rnaseq_bay_gsea, "HALLMARK", lbls = c("Down in BAY", "Up in BAY"), vals = unname(clrs[c(3, 4)]))
),
tar_target(
rnaseq_hyp_bay_gsea_plot,
plot_gsea(rnaseq_hyp_bay_gsea, "HALLMARK", lbls = c("Down in Hypoxia", "Up in Hypoxia"), vals = unname(clrs[c(1, 2)]))
),
tar_target(
gsea_overlap,
find_gsea_overlap(rnaseq_hyp_gsea, rnaseq_bay_gsea)
),
tar_target(
gsea_venn,
plot_rnaseq_venn(gsea_overlap, "Gene Sets")
),
tar_target(
unique_symbol_ids,
get_unique_symbol_ids(dds)
),
tar_target(
dds_symbols,
dds_to_symbols(dds, unique_symbol_ids)
),
tar_target(
rnaseq_tfea,
run_tfea(rnaseq_different_differences)
),
tar_target(
rnaseq_tfea_plot,
plot_tfea(rnaseq_tfea)
),
tar_render(
rnaseq_report,
path = path_to_reports("rnaseq.Rmd"),
output_dir = system.file("analysis/pdfs", package = "Copeland.2021.hypoxia.flux")
),
# metabolomics ------------------------------------------------------------
tar_target(
metab_targeted_files,
path_to_data("lf_05-bay_metabolomics-targeted.xlsx"),
format = "file"
),
tar_target(
metab_targeted_raw,
format_metab_targeted(metab_targeted_files)
),
tar_target(
metab_targeted_clean,
remove_missing_metab(metab_targeted_raw) %>%
correct_drift() %>%
quality_control() %>%
impute_missing() %>%
pqn() %>%
log_transform()
),
tar_target(
metab_targeted_pca,
plot_metab_pca(metab_targeted_clean)
),
tar_target(
metab_targeted_limma,
fit_metab_limma(metab_targeted_clean)
),
tar_target(
metab_different_differences,
metab_top_table(metab_targeted_clean, metab_targeted_limma, "deltas")
),
tar_target(
metab_hyp,
metab_top_table(metab_targeted_clean, metab_targeted_limma, "hyp_on_dmso")
),
tar_target(
metab_bay,
metab_top_table(metab_targeted_clean, metab_targeted_limma, "bay_on_norm")
),
tar_target(
metab_volcano,
plot_metab_volcano(
metab_different_differences,
mois = c("GAP", "2-hydroxyglutarate", "aconitate", "taurine", "hydroxyproline", "GABA"),
colors = clrs[c(2, 4)],
xlab = "ΔHypoxia/ΔBAY"
)
),
tar_target(
metab_volcano_hyp,
plot_metab_volcano(
metab_hyp,
colors = clrs[2:1],
xlab = "Hypoxia/Normoxia"
)
),
tar_target(
metab_volcano_bay,
plot_metab_volcano(
metab_bay,
colors = clrs[4:3],
xlab = "BAY/DMSO"
)
),
tar_target(
metab_venn,
plot_metab_venn(metab_hyp, metab_bay)
),
tar_target(
metab_moi,
plot_mois(metab_targeted_clean, c("GAP", "2-hydroxyglutarate", "aconitate", "taurine", "hydroxyproline", "GABA"))
),
tar_target(
metab_msea,
run_msea(metab_different_differences, metab_pathways)
),
tar_target(
metab_msea_hyp,
run_msea(metab_hyp, metab_pathways)
),
tar_target(
metab_msea_bay,
run_msea(metab_bay, metab_pathways)
),
tar_target(
metab_pathways,
get_metab_pathways()
),
tar_target(
msea_plot,
plot_msea(metab_msea, lbls = c("With BAY", "With Hypoxia"), vals = unname(clrs[c(4, 2)]))
),
tar_target(
msea_hyp_plot,
plot_msea(metab_msea_hyp, lbls = c("Down in Hypoxia", "Up in Hypoxia"), vals = unname(clrs[c(1, 2)]))
),
tar_target(
msea_bay_plot,
plot_msea(metab_msea_bay, lbls = c("Down in BAY", "Up in BAY"), vals = unname(clrs[c(3, 4)]))
),
tar_target(
leading_edge,
plot_leading_edge(metab_different_differences, metab_pathways[["(KEGG) Citrate cycle (TCA cycle)"]])
),
tar_render(
metabolomics_report,
path = path_to_reports("metabolomics-targeted.Rmd"),
output_dir = system.file("analysis/pdfs", package = "Copeland.2021.hypoxia.flux")
),
# tar_target(
# metab_untargeted_files,
# path_to_data(".mzML"),
# format = "file"
# ),
# tar_target(
# metab_untargeted_sample_file,
# path_to_data("sample-sheet.csv"),
# format = "file"
# ),
# tar_target(
# metab_untargeted_samples,
# format_sample_info(metab_untargeted_sample_file)
# ),
# tar_map(
# values = values,
# names = "names",
# tar_target(
# raw,
# read_metab_raw(metab_untargeted_files, polarity, metab_untargeted_samples)
# ),
# tar_target(
# tics,
# get_tics(raw, metab_untargeted_samples)
# ),
# tar_target(
# chromatograms,
# plot_chromatograms(tics)
# ),
# tar_target(
# intensities,
# plot_intensities(tics)
# ),
# tar_target(
# cwp,
# optimize_centwave_params(raw, polarity)
# ),
# tar_target(
# peaks,
# findChromPeaks(raw, cwp$best_cwp)
# ),
# tar_target(
# merged,
# refineChromPeaks(peaks, param = MergeNeighboringPeaksParam(expandRt = 4, ppm = 2.5))
# ),
# tar_target(
# align_group,
# optimize_align_group_params(merged, polarity)
# ),
# tar_target(
# aligned,
# adjust_rtime(merged, align_group$best_obi)
# ),
# tar_target(
# grouped,
# group_peaks(aligned, align_group$best_density)
# ),
# tar_target(
# filled,
# fillChromPeaks(grouped)
# )
# ),
# MYC ---------------------------------------------------------------------
tar_target(
simyc_fluxes,
combine_fluxes(growth_rates, fluxes, exp = "05-simyc")
),
tar_target(
simyc_fluxes_annot,
annot_fluxes_simyc(simyc_fluxes)
),
tar_target(
simyc_fluxes_growth_plot,
plot_myc(simyc_fluxes, simyc_fluxes_annot, "growth", "Growth Rate (/h)", x = treatment, fill = oxygen) +
ggplot2::geom_hline(yintercept = 0, size = 0.25)
),
tar_target(
simyc_fluxes_lactate_plot,
plot_myc(simyc_fluxes, simyc_fluxes_annot, "lactate", "Lactate\n(fmol/cell/h)", x = treatment, fill = oxygen)
),
tar_target(
oemyc_fluxes,
combine_fluxes(growth_rates, fluxes, exp = "bay-myc")
),
tar_target(
oemyc_fluxes_annot,
annot_fluxes_oemyc(oemyc_fluxes)
),
tar_target(
oemyc_fluxes_growth_plot,
plot_myc(oemyc_fluxes, oemyc_fluxes_annot, "growth", "Growth Rate (/h)", x = virus, fill = treatment)
),
tar_target(
oemyc_fluxes_lactate_plot,
plot_myc(oemyc_fluxes, oemyc_fluxes_annot, "lactate", "Lactate\n(fmol/cell/h)", x = virus, fill = treatment)
),
# M1 ----------------------------------------------------------------------
tar_target(
m1a,
plot_growth_curve(flux_measurements, cell = "lf", exp = c("05", "bay"))
),
tar_target(
m1b,
plot_growth_rates(growth_rates, cell = "lf", exp = c("05", "bay"))
),
# tar_target(
# m1c,
# plot_viability(viability) + ggplot2::coord_cartesian(ylim = c(NA, NA))
# ),
tar_target(
m1c_image,
path_to_manuscript("figures/images/lf_05_hif1a-ldha-blots.png"),
format = "file"
),
tar_target(
m1c,
plot_blot(m1c_image)
),
tar_target(
m1d_image,
path_to_manuscript("figures/images/lf_bay_hif1a-ldha-blots.png"),
format = "file"
),
tar_target(
m1d,
plot_blot(m1d_image)
),
tar_target(
m1e,
plot_expression(blot_norm, c("lf_05", "lf_bay"), "hif1a", "HIF-1α protein\n(normalized)")
),
tar_target(
m1f,
plot_expression(blot_norm, c("lf_05", "lf_bay"), "ldha", "LDHA protein\n(normalized)")
),
tar_target(
m1g,
plot_expression(mrna_norm, c("lf_05", "lf_bay"), "glut1", "GLUT1 mRNA\n(normalized)")
),
tar_target(
m1h,
plot_expression(mrna_norm, c("lf_05", "lf_bay"), "ldha", "LDHA mRNA\n(normalized)")
),
tar_target(
m1i,
plot_high_fluxes(fluxes, "lf", c("05", "bay"))
),
tar_target(
m1j,
plot_low_fluxes(fluxes, "lf", c("05", "bay"))
),
tar_target(
m1,
arrange_fluxes(m1a, m1b, m1c, m1d, m1e, m1f, m1g, m1h, m1i, m1j)
),
tar_target(
m1_figure,
write_figures(m1, "m1.pdf"),
format = "file"
),
# S1 ----------------------------------------------------------------------
tar_target(
s1a,
plot_time_lines(viability, y = viability, ylab = "Cell viability (%)", clr = "oxygen")
),
tar_target(
s1b,
plot_cells_per_dna(dna_per_cell_clean)
),
tar_target(
dna_count_hypoxia_file,
path_to_data("dna-count-hypoxia.csv"),
format = "file"
),
tar_target(
dna_count_hypoxia,
clean_dna_count_hypoxia(dna_count_hypoxia_file)
),
tar_target(
s1c,
plot_dna_count_hypoxia(dna_count_hypoxia)
),
tar_target(
s1d,
plot_evap_data(evap_clean)
),
tar_target(
s1e,
plot_k(degradation_rates, k)
),
tar_target(
s1,
arrange_s1(s1a, s1b, s1c, s1d, s1e)
),
tar_target(
s1_figure,
write_figures(s1, "s1.pdf"),
format = "file"
),
# S2 ----------------------------------------------------------------------
tar_target(
s2a,
plot_growth_curve(flux_measurements, cell = "lf", exp = c("02"))
),
tar_target(
s2b,
plot_growth_rates(growth_rates, cell = "lf", exp = c("02"))
),
tar_target(
s2c,
patchwork::plot_spacer()
),
tar_target(
s2d_image,
path_to_manuscript("figures/images/lf_02_hif1a-ldha-blots.png"),
format = "file"
),
tar_target(
s2d,
plot_blot(s2d_image)
),
tar_target(
s2e,
plot_expression(blot_norm, c("lf_02"), "hif1a", "HIF-1α protein\n(normalized)")
),
tar_target(
s2f,
plot_expression(blot_norm, c("lf_02"), "ldha", "LDHA protein\n(normalized)")
),
tar_target(
s2g,
plot_expression(mrna_norm, c("lf_02"), "glut1", "GLUT1 mRNA\n(normalized)")
),
tar_target(
s2h,
plot_expression(mrna_norm, c("lf_02"), "ldha", "LDHA mRNA\n(normalized)")
),
tar_target(
s2i,
plot_high_fluxes(fluxes, "lf", c("02"))
),
tar_target(
s2j,
plot_low_fluxes(fluxes, "lf", c("02"))
),
tar_target(
s2,
arrange_fluxes(s2a, s2b, s2c, s2d, s2e, s2f, s2g, s2h, s2i, s2j)
),
tar_target(
s2_figure,
write_figures(s2, "s2.pdf"),
format = "file"
),
# S3 ----------------------------------------------------------------------
tar_target(
s3a,
plot_growth_curve(flux_measurements, cell = "pasmc", exper = c("05"))
),
tar_target(
s3b,
plot_growth_rates(growth_rates, cell = "pasmc", exper = c("05"))
),
tar_target(
s3c,
patchwork::plot_spacer()
),
tar_target(
s3d_image,
path_to_manuscript("figures/images/pasmc_05_hif1a-ldha-blots.png"),
format = "file"
),
tar_target(
s3d,
plot_blot(s3d_image)
),
tar_target(
s3e,
plot_expression(blot_norm, c("pasmc_05"), "hif1a", "HIF-1α protein\n(normalized)")
),
tar_target(
s3f,
plot_expression(blot_norm, c("pasmc_05"), "ldha", "LDHA protein\n(normalized)")
),
tar_target(
s3g,
plot_expression(mrna_norm, c("pasmc_05"), "glut1", "GLUT1 mRNA\n(normalized)")
),
tar_target(
s3h,
plot_expression(mrna_norm, c("pasmc_05"), "ldha", "LDHA mRNA\n(normalized)")
),
tar_target(
s3i,
plot_high_fluxes(fluxes, "pasmc", c("05"))
),
tar_target(
s3j,
plot_low_fluxes(fluxes, "pasmc", c("05"))
),
tar_target(
s3,
arrange_fluxes(s3a, s3b, s3c, s3d, s3e, s3f, s3g, s3h, s3i, s3j)
),
tar_target(
s3_figure,
write_figures(s3, "s3.pdf"),
format = "file"
),
# M2 ----------------------------------------------------------------------
tar_target(
m2ab,
plot_labeling_rate(mids)
),
tar_target(
m2c,
plot_manuscript_mids(pruned_mids)
),
tar_target(
m2,
arrange_m2(m2ab, m2c)
),
tar_target(
m2_figure,
write_figures(m2, "m2.pdf"),
format = "file"
),
# S4 ----------------------------------------------------------------------
tar_target(
s4,
plot_lf_mids(pruned_mids)
),
tar_target(
s4_figure,
write_figures(s4, "s4.pdf")
),
# S5 ----------------------------------------------------------------------
tar_target(
s5,
plot_pasmc_mids(pruned_mids)
),
tar_target(
s5_figure,
write_figures(s5, "s5.pdf")
),
# S6 ----------------------------------------------------------------------
tar_target(
time_course_mids,
format_time_course_mids(model_mids)
),
tar_target(
s6a,
plot_mid_time_course(time_course_mids, "lf", "21%", "None", "plasma")
),
tar_target(
s6b,
plot_mid_time_course(time_course_mids, "lf", "0.5%", "None", "viridis")
),
tar_target(
s6,
arrange_s6(s6a, s6b)
),
tar_target(
s6_figure,
write_figures(s6, "s6.pdf")
),
# S7 ----------------------------------------------------------------------
tar_target(
s7a,
plot_normoxia_network(lf_hypoxia_graph, "LF\nNormoxia")
),
tar_target(
hypoxia_growth_graph,
make_graph(map_flux_differences, nodes, cell = "lf", treat = "0.5%", normalizer = "growth")
),
tar_target(
s7d,
plot_ratio_network(hypoxia_growth_graph, "Hypoxia/Normoxia\nGrowth Rate Normalized", edges = FALSE)
),
tar_target(
pasmc_hypoxia_graph,
make_graph(map_flux_differences, nodes, cell = "pasmc", treat = "21%", normalizer = "none")
),
tar_target(
s7b,
plot_normoxia_network(pasmc_hypoxia_graph, "PASMC\nNormoxia")
),
tar_target(
s7c,
plot_ratio_network(pasmc_hypoxia_graph, "PASMC\nHypoxia/Normoxia")
),
tar_target(
s7,
arrange_s7(s7a, s7b, s7c, s7d)
),
tar_target(
s7_figure,
write_figures(s7, "s7.pdf")
),
# M3 ----------------------------------------------------------------------
tar_target(
node_file,
path_to_data("nodes\\.csv"),
format = "file"
),
tar_target(
nodes,
readr::read_csv(node_file)
),
tar_target(
lf_hypoxia_graph,
make_graph(map_flux_differences, nodes, cell = "lf", treat = "21%", normalizer = "none")
),
tar_target(
lf_hypoxia_graph_ratio_plot,
plot_ratio_network(lf_hypoxia_graph, "Hypoxia/Normoxia")
),
tar_target(
bay_graph,
make_graph(map_flux_differences, nodes, cell = "lf", treat = "DMSO", normalizer = "none")
),
tar_target(
bay_graph_ratio_plot,
plot_ratio_network(bay_graph, "BAY/DMSO")
),
tar_target(
m3,
arrange_m4(lf_hypoxia_graph_ratio_plot, bay_graph_ratio_plot)
),
tar_target(
m3_figure,
write_figures(m3, "m3.pdf")
),
# M4 ----------------------------------------------------------------------
tar_target(
m4,
plot_lactate_mids(pruned_mids, "lf")
),
tar_target(
m4_figure,
write_figures(m4, "m4.pdf")
),
# M5 ----------------------------------------------------------------------
tar_target(
twoby_fluxes,
analyze_twoby_fluxes(growth_rates, fluxes)
),
tar_target(
m5a,
plot_twoby_fluxes(twoby_fluxes$data, twoby_fluxes$annot, "growth", "Growth Rate (/h)")
),
tar_target(
m5b,
plot_twoby_fluxes(twoby_fluxes$data, twoby_fluxes$annot, "glucose", "Glucose\n(fmol/cell/h)") + ggplot2::scale_y_reverse()
),
tar_target(
m5c,
plot_twoby_fluxes(twoby_fluxes$data, twoby_fluxes$annot, "lactate", "Lactate\n(fmol/cell/h)")
),
tar_target(
m5g,
plot_nad(nad_final, nad_annot, "NAD", "NAD\n(nmol/cell)")
),
tar_target(
m5h,
plot_nad(nad_final, nad_annot, "NADH", "NADH\n(nmol/cell)")
),
tar_target(
m5i,
plot_nad(nad_final, nad_annot, "Ratio", "NADH/NAD ratio")
),
tar_target(
m5,
arrange_m5(m5a, m5b, m5c, metab_targeted_pca, metab_volcano, metab_moi, msea_plot, leading_edge, m5g, m5h, m5i)
),
tar_target(
m5_figure,
write_figures(m5, "m5.pdf")
),
# S8 ----------------------------------------------------------------------
tar_target(
s8,
arrange_s8(metab_volcano_hyp, metab_volcano_bay, metab_venn, msea_hyp_plot, msea_bay_plot)
),
tar_target(
s8_figure,
write_figures(s8, "s8.pdf")
),
# M6 ----------------------------------------------------------------------
tar_target(
twoby_densities_annot,
annot_twoby_densities(blot_norm)
),
tar_target(
m6,
arrange_m6(rnaseq_pca, rnaseq_volcano, rnaseq_goi, rnaseq_gsea_plot, rnaseq_tfea_plot)
),
tar_target(
m6_figure,
write_figures(m6, "m6.pdf")
),
# S9 ----------------------------------------------------------------------
tar_target(
s9,
arrange_s9(rnaseq_hyp_volcano, rnaseq_bay_volcano, rnaseq_venn, gsea_venn, rnaseq_hyp_gsea_plot, rnaseq_bay_gsea_plot)
),
tar_target(
s9_figure,
write_figures(s9, "s9.pdf")
),
# M7 ----------------------------------------------------------------------
tar_target(
myc_image_file,
path_to_manuscript("figures/images/lf_05-bay_myc-blots.png"),
format = "file"
),
tar_target(
myc_image,
plot_blot(myc_image_file, scale = 1, vjust = 0, hjust = 0)
),
tar_target(
myc_blot_quant,
plot_twoby_densities(blot_norm, "myc", twoby_densities_annot, "MYC protein\n(normalized)")
),
tar_target(
simyc_image_file,
path_to_manuscript("figures/images/lf_05-simyc_myc-blots.png"),
format = "file"
),
tar_target(
simyc_image,
plot_blot(simyc_image_file, scale = 1, vjust = 0, hjust = 0)
),
tar_target(
oemyc_image_file,
path_to_manuscript("figures/images/lf_bay-myc_myc-blots.png"),
format = "file"
),
tar_target(
oemyc_image,
plot_blot(oemyc_image_file, scale = 1, vjust = 0, hjust = 0)
),
tar_target(
m7,
arrange_m7(myc_image, myc_blot_quant, simyc_image, simyc_fluxes_growth_plot, simyc_fluxes_lactate_plot, oemyc_image, oemyc_fluxes_growth_plot, oemyc_fluxes_lactate_plot)
),
tar_target(
m7_figure,
write_figures(m7, "m7.pdf")
),
# resources table ---------------------------------------------------------
tar_target(
resources_table,
create_resources()
),
# flux comparison tables --------------------------------------------------
tar_target(
lf_hypoxia_table,
format_flux_table(map_flux_differences, "lf", "0.5%", " SSR 391.7 [311.2-416.6] (95% CI, 362 DOF)", " SSR 334.3 [311.2-416.6] (95% CI, 362 DOF)")
),
tar_target(
lf_bay_table,
format_flux_table(map_flux_differences, "lf", "BAY", " SSR 393.5 [311.2-416.6] (95% CI, 362 DOF)", " SSR 392.4 [308.4-413.4] (95% CI, 359 DOF)")
),
tar_target(
pasmc_hypoxia_table,
format_flux_table(map_flux_differences, "pasmc", "0.5%", " SSR 575.6 [499.1-630.6] (95% CI, 563 DOF)", " SSR 521.3 [482.2-611.6] (95% CI, 545 DOF)")
),
# write manuscript --------------------------------------------------------
tar_target(
template,
system.file("manuscript/template.docx", package = "Copeland.2021.hypoxia.flux"),
format = "file"
),
tar_render(
manuscript,
path = path_to_manuscript("manuscript.Rmd"),
output_dir = path_to_manuscript(""),
output_format = bookdown::word_document2(
reference_docx = template,
df_print = "kable",
fig_caption = TRUE,
number_sections = FALSE,
pandoc_args = c(
"--lua-filter=scholarly-metadata.lua",
"--lua-filter=author-info-blocks.lua",
"--lua-filter=pagebreak.lua"
)
)
),
tar_render(
supplement,
path = path_to_manuscript("supplement.Rmd"),
output_dir = path_to_manuscript(""),
output_format = bookdown::word_document2(
reference_docx = template,
df_print = "kable",
fig_caption = TRUE,
number_sections = FALSE,
pandoc_args = c(
"--lua-filter=scholarly-metadata.lua",
"--lua-filter=author-info-blocks.lua",
"--lua-filter=pagebreak.lua",
"--lua-filter=multiple-bibliographies.lua"
)
)
),
NULL
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.