#' Estimate if your file contain rain and insects for 10 min intervals
#
#' @param evaluation10 Estimates a evaluation of insect and rain
#' @import tuneR
#' @import seewave
#' @import soundecology
#' @import vegan
#' @return a evaluation of rain and insects
#' @export
#' @examples
#' #This code analyzes for a 10-minute interval
#' #evaluation10()->evaluation10min #Vector that contain your results
#' #evaluation10min #Call the vector, and see your results.
#'
#'
#'
#' @author Oscar Ramírez Alán(\email{osoramirez@@gmail.com}). Implements a
#' loops using base function from seewave and soundecology.
#'
#' @references {
#' Luis J. Villanueva-Rivera and Bryan C. Pijanowski (2018). soundecology: Soundscape Ecology. R package version 1.3.3. https://CRAN.R-project.org/package=soundecology.
#'
#' Sueur, J., Aubin, T., & Simonis, C. (2008). Seewave, a free modular tool for sound analysis and synthesis. Bioacoustics, 18(2), 213-226.
#'
#' Uwe Ligges, Sebastian Krey, Olaf Mersmann, and Sarah Schnackenberg (2018). tuneR: Analysis of Music and Speech. URL: https://CRAN.R-project.org/package=tuneR.
#' }
#'
#'
#'
evaluation10 <- function(){
df <- data.frame()
files <- list.files(path = getwd(), pattern = "wav$", ignore.case = T )
minutos<-seq(0:9)# 60-minute interval
for(file in 1:length(files)){
for(i in 1:(length(minutos))){
wav <- readWave(files[file], from = minutos[i]-1, to = minutos[i],
units = "minutes", header = FALSE, toWaveMC = NULL)
x <-soundscapespec(wav, plot=TRUE, main=files[file]) ## function call to compute soundscape power in R-seewave
v <- as.vector(x[,2]) ## soundscape power F 1-2 kHz
Pow.12 <- x[1,2] ## 1-2 kHz
Pow.12 <- as.data.frame(Pow.12)
Pow02 <-x[c(0:2),2] ## 0-2 kHz
Pow02Sum <- sum(Pow02)
Pow02Mean<- mean(Pow02)
Pow910 <-x[c(9,10),2] ## 9-10 kHz
Pow910Sum <- sum(Pow910)
PowC910Mean <-mean(Pow910)
BiocC <-x[c(2,3,4,5,6,7,8),2] ## 2-8 kHz
BiocC28 <-as.data.frame(BiocC)
BiocC28 <- mean(BiocC28$BiocC)
Technophony <- v[1] ## Technophony
TB<-(Technophony/BiocC28)
MAE<-M(wav) #Median of amplitude envelope
freq<-wav@samp.rate
spectrum0<-data.table(meanspec(wav,f=freq,norm=F,plot=F))
SPL_Un<-NULL
x<-NULL
y<-NULL
spectrum0=data.table(meanspec(wav,f=freq,norm=F,plot=T, main=files[file]))
spectrum0[,SPL_Un:=20*log10(y/(2*10e-5))]
SPLm<- data.table(mean(spectrum0$SPL_Un))
dom.frec<-dfreq(wav, f=22050, wl=512, threshold=0.015, main=paste(files[file], '-', minutos[i], sep=""))#eat:modifique para ajustar el nombre del archivo
as.data.frame(dom.frec)->dom.frec1
dm.12<-dom.frec1[dom.frec1$y>1 & dom.frec1$y<=2, ]
length.fd.12<-length(dm.12$y)
dm.23<-dom.frec1[dom.frec1$y>2 & dom.frec1$y<=3, ]
length.fd.23<-length(dm.23$y)
dm.34<-dom.frec1[dom.frec1$y>3 & dom.frec1$y<=4, ]
length.fd.34<-length(dm.34$y)
dm.56<-dom.frec1[dom.frec1$y>5 & dom.frec1$y<=6, ]
length.fd.56<-length(dm.56$y)
z <- list( SPLm=SPLm,
criterion1=MAE, criterion2=length.fd.12,
criterion3=length.fd.23, criterion4=length.fd.34, criterion5=length.fd.56,
Pow.12=Pow.12,TB=TB,
Technophony=Technophony,
BiocC28=BiocC28,
Pow02Mean=Pow02Mean,Pow02Sum=Pow02Sum,
PowC910Mean=PowC910Mean, Pow910Sum=Pow910Sum)
df <- rbind(df, data.frame(z, row.names = make.names(rep(files[file], length(z[[1]])), unique = TRUE)))
}
}
df <- decostand(df, method="hellinger", na.rm = FALSE)
df$Raindetector <- df$BiocC28[]/df$TB[]
names(df)[1]<-paste("SPLmean")
return(df)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.