#' @title A funcion to calculate Q using Monte Carlo
#'
#' @description This function calculates Q0, a measure of spatial association based on symbolic entropy.
#' @param Y a factor of the same length as the coordinates x
#' @param x coordenadas asociadas a la observación de Y
#' @param m amplitud de las m-historias
#' @param s grado de solapamiento
#' @param nsim number of permutations
#' @usage q_mc(Y, x, m, nsim = 999)
#' @keywords spatial association, qualitative variable, symbolic entropy, symbols
#' @details Aquí Antonio escribe una linda historia
#' @return decir que cosas son las que devuelve
#' \tabular{ll}{
#' \code{Q0s_p} \tab value of the statistic of the observed distribution. Symbols p\cr
#' \code{p.value.p} \tab the pseudo p-value of the Q0s_p test \cr
#' \code{efp_symb} \tab frecuencia empírica de los simbolos "p" de cada permutación\cr
#' \code{Q0s_c} \tab value of the statistic of the observed distribution. Symbols c\cr
#' \code{p.value.c} \tab the pseudo p-value of the Q0s_c test \cr
#' \code{efc_symb} \tab frecuencia empírica de los simbolos "c" de cada permutación\cr
#' \code{nsim} \tab nsim simulated values of statistic \cr
#' }
#' @author
#' \tabular{ll}{
#' Fernando López \tab \email{fernando.lopez@@upct.es} \cr
#' Román Mínguez \tab \email{roman.minguez@@uclm.es} \cr
#' Antonio Páez \tab \email{paezha@@gmail.com} \cr
#' Manuel Ruiz \tab \email{manuel.ruiz@@upct.es} \cr
#' }
#' @references
#' \itemize{
#' \item Ruiz, M., López, F., and Páez, A. (2010).
#' Testing for spatial association of qualitative data using symbolic dynamics.
#' \emph{Journal of Geographical Systems}, 12(3), 281-309.
#' \item López, F., and Páez, A. (2012).
#' Distribution-free inference for Q(m) based on permutational bootstrapping: an application
#' to the spatial co-location pattern of firms in Madrid.
#' \emph{Estadística Española}, 177, 135-156.
#' }
#' @seealso
#' \code{\link{dgp_spq}}, \code{\link{m_surr_no}},\code{\link{q_symb}}
#'
#' @examples
#' # Example 1
#' N <- 1000
#' cx <- runif(N)
#' cy <- runif(N)
#' x <- cbind(cx,cy)
#' listw <- spdep::nb2listw(spdep::knn2nb(spdep::knearneigh(cbind(cx,cy), k=4)))
#' p <- c(1/6,3/6,2/6)
#' rho = 0.5
#' fx <- dgp_spq(x = x, p = p, listw = listw, rho = rho)
#' Q0s <- q_mc(fx = fx, x = x, m = 3, nsim = 199)
#'
#' # Example 2
#'
#' # Load dataset
#' data("FastFood")
#' # Define coordinates
#' x <- cbind(FastFood.sf$Lon,FastFood.sf$Lat)
#' m <- 3
#' Q0s <- q_mc(fx = FastFood.sf$Type, x = x, m = 3, nsim = 199)
q_mc <- function(fx, x, m, nsim = 999,
seedinit = 123,
distance = "Euclidean") {
Y <- fx
if (length(Y) != dim(x)[1])
stop("La longitud e Y no coincide con la dimensión de las coordenadas")
k <- nlevels(Y)
N <- length(Y)
mdtfull <- sf::st_distance(sf::st_as_sf(x),
which = distance)
# full distance matrix
ms <- mdtms <- matrix(0, nrow = nrow(mdtfull),
ncol = m)
ms[, 1] <- 1:N
rownames(mdtms) <- ms[, 1]
colnames(mdtms) <- NULL
for (i in 1:N) {
mdti <- mdtfull[i, ]
mdtms[i, 1] <- mdti[i]
# maximum distance ith row
max_dt_mdti <- mdti[which.max(mdti)]
mdti[i] <- mdti[i] + max_dt_mdti
# distance with the same point is always zero...
for (j in 2:m) {
indx_mdti <- which.min(mdti)
ms[i, j] <- indx_mdti
mdtms[i, j] <- mdti[indx_mdti]
mdti[indx_mdti] <- mdti[indx_mdti] + max_dt_mdti
}
}
symb <- cr_symb(k, m)
Q0 <- q_symb_A2(Y, ms, symb)
set.seed(seedinit)
mcsamp <- rsample::bootstraps(as.data.frame(as.factor(Y)),
times = nsim)
Qfull_mc <- purrr::map(mcsamp$splits,
q_symb_A2, ms, symb)
Qfull_stat <- unlist(Qfull_mc)
Qpmc <- Qfull_stat[names(Qfull_stat) == "qp"]
Qcmc <- Qfull_stat[names(Qfull_stat) == "qc"]
mefp_symb <- matrix(0, nrow = nrow(symb$p_symb),
ncol = nsim)
mefc_symb <- matrix(0, nrow = nrow(symb$c_symb),
ncol = nsim)
rownames(mefp_symb) <- names(Q0$efp_symb)
rownames(mefc_symb) <- names(Q0$efc_symb)
colnames(mefp_symb) <- paste("sim", 1:nsim, sep = "")
colnames(mefc_symb) <- paste("sim", 1:nsim, sep = "")
for (i in 1:nsim) {
mefp_symb[,i] <- Qfull_mc[[i]]$efp_symb
mefc_symb[,i] <- Qfull_mc[[i]]$efc_symb
}
pvaluemc_p <- sum(Qpmc > Q0$qp) / (nsim + 1)
pvaluemc_c <- sum(Qcmc > Q0$qc) / (nsim + 1)
results <- list(Q0$qp, pvaluemc_p,
Q0$qc, pvaluemc_c,
Q0$qp_symb, Q0$qc_symb,
Q0$PSymb, Q0$CSymb,
Q0$efp_symb, Q0$efc_symb,
Qpmc, Qcmc, mefp_symb, mefc_symb,
ms, mdtms, symb, distance)
names(results) <- c("qp", "pvaluemc_qp",
"qc", "pvaluemc_qc",
"qp_symb", "qc_symb",
"PSymb", "CSymb",
"efp_symb", "efc_symb",
"qpmc", "qcmc",
"efp_symb_mc", "efc_symb_mc",
"ms", "mdtms", "symb", "distance")
return(results)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.