library(tidyverse)
library(tidymodels)
library(sf)
library(ranger)
library(doParallel)
library(foreach)
#============== Tidymodels implementaiton of rfspav ============================
set_new_model("rfspav")
set_model_mode("rfspav", "regression")
set_model_engine("rfspav", "regression", "rfspav")
set_dependency("rfspav", eng = "rfspav", pkg = "rfspav")
show_model_info("rfspav")
# Set model arguments
set_model_arg(
model = "rfspav",
eng = "rfspav",
parsnip = "neighbors",
original = "neighbors",
func = list(pkg = "dials", fun = "neighbors", range = c(5, 10)),
has_submodel = FALSE
)
set_model_arg(
model = "rfspav",
eng = "rfspav",
parsnip = "trees",
original = "trees",
func = list(pkg = "dials", fun = "trees", range = c(500, 2000)),
has_submodel = FALSE
)
set_model_arg(
model = "rfspav",
eng = "rfspav",
parsnip = "mtry",
original = "mtry",
func = list(pkg = "dials", fun = "mtry", range = c(1, unknown())),
has_submodel = FALSE
)
set_model_arg(
model = "rfspav",
eng = "rfspav",
parsnip = "min.node.size",
original = "min.node.size",
func = list(pkg = "dials", fun = "min_n", range = c(2L, 40L)),
has_submodel = FALSE
)
rfspav <- function(mode = "regression",
neighbors = NULL,
trees = 500,
mtry = NULL,
min.node.size = NULL
) {
args <- list(
neighbors = rlang::enquo(neighbors),
trees = rlang::enquo(trees),
mtry = rlang::enquo(mtry),
min.node.size = rlang::enquo(min.node.size)
)
new_model_spec(
"rfspav",
args = args,
eng_args = NULL,
mode = mode,
method = NULL,
engine = NULL
)
}
set_fit(
model = "rfspav",
eng = "rfspav",
mode = "regression",
value = list(
interface = "formula",
#data = c(formula = "formula", data = "data", coord_names = "coord_names", type = "type"),
protect = c("formula", "data"),
func = c(pkg = "rfspav", fun = "rfspav"),
#defaults = list()
defaults = list(importance = "impurity", type = "rfsi", coord_names = c("Longitude", "Latitude"), data_crs = 4326, cpus = 6, progress = TRUE)
)
)
show_model_info("rfspav")
set_encoding(
model = "rfspav",
eng = "rfspav",
mode = "regression",
options = list(
predictor_indicators = "none",
compute_intercept = FALSE,
remove_intercept = FALSE,
allow_sparse_x = FALSE
)
)
set_pred(
model = "rfspav",
eng = "rfspav",
mode = "regression",
type = "numeric",
value = list(
pre = NULL,
post = NULL,
func = c(fun = "predict.rfspav"),
args =
list(
object = quote(object$fit),
new_data = quote(new_data)
)
)
)
#================= TEST ====================================
library(AmesHousing)
ames <- make_ames()
set.seed(4595)
data_split <- initial_split(ames, strata = "Sale_Price")
ames_train <- training(data_split) %>% as.data.frame()
ames_test <- testing(data_split) %>% as.data.frame()
#ames_train_sp <- ames_train
#coordinates(ames_train_sp) <- ~Longitude + Latitude
ames.fun <- as.formula(paste("Sale_Price", paste(names(ames)[c(80, 81, 1:78)], collapse = "+"), sep = "~"))
ames_train <- dplyr::sample_n(ames_train, 1000)
rfsp(num_class = 5, trees = 600, mtry = 4, min.node.size = 10) %>%
translate(engine = "rfspav")
rfspav_spec <- rfsp(trees = 500, num_class = 5) %>%
set_engine("rfspav")
translate(rfspav_spec)
rfspav_fit <- rfspav_spec %>%
fit(formula = ames.fun, data = ames_train, data_crs = 4326, engine = "rfspav")
rfspav_fit
rfspav(formula = ames.fun, data = ames_train, coord_names = c("Longitude", "Latitude"), type = "rfsi", clust_style = "hclust", data_crs = 4326, cpus = 6)
formula = ames.fun; data = ames_train; coord_names = c("Longitude", "Latitude"); type = "rfsp"; clust_style = "hclust"; n_class_levels = 10; data_crs = 4326
ames_test_pred <- predict(rfspav_fit, new_data = ames_test, type = "numeric") %>%
bind_cols(ames_test)
ames_test_pred$.pred
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.