#https://gdc.cancer.gov/about-data/publications/coadread_2012
#library(dendextend)
#library(foreach)
###
library(aricode)
library(SNFtool)
library(cluster)
#library(iClusterPlus)
#library(clustRviz)
library(PINSPlus)
#library(Spectrum)
library(survival)
library(SNFtool)
library(HCfused)
#library(hcfusedpkg)
source("~/GitHub/HC-fused/NEMO.R")
do.LOG <- FALSE
do.PCA <- FALSE
ENS1 <- FALSE
ENS2 <- FALSE
ENS3 <- FALSE
ENS4 <- TRUE
cat("Reading in TCGA data ... \n")
# aml is slow
#aml, gbm, lung, sarcoma, colon, liver, ovarian, breast, kidney, melanoma
cancertype <- "kidney"
LOC <- paste("~/TCGA_data/NAR Data/",cancertype,"/", sep="")
#mRNA
mRNAX <- t(read.table(paste(LOC,"exp", sep="")))
#Methy
MethyX <- t(read.table(paste(LOC,"methy", sep="")))
#miRNA
miRNAX <- t(read.table(paste(LOC,"mirna", sep="")))
#CLIN
survivalX <- read.table(paste(LOC,"survival", sep=""), header=TRUE)
# define the patients
patientsX <- intersect(intersect(rownames(mRNAX),rownames(MethyX)),rownames(miRNAX))
n.iter=30
P_FUSED <- rep(NaN,n.iter)
P_FUSED_3 <- rep(NaN,n.iter)
P_FUSED_5 <- rep(NaN,n.iter)
P_FUSED_10 <- rep(NaN,n.iter)
P_FUSED_combined <- rep(NaN,n.iter)
P_FUSED_combined_1 <- rep(NaN,n.iter)
P_FUSED_combined_2 <- rep(NaN,n.iter)
P_FUSED_combined_3 <- rep(NaN,n.iter)
P_FUSED_combined_4 <- rep(NaN,n.iter)
P_FUSED_combined_5 <- rep(NaN,n.iter)
P_FUSED_combined_6 <- rep(NaN,n.iter)
P_FUSED_combined_7 <- rep(NaN,n.iter)
this_method = "ward.D"
for (xx in 1:n.iter){
cat(xx, "of", n.iter,"\n")
patients <- sample(patientsX,100)
mRNA <- mRNAX[patients,]
Methy <- MethyX[patients,]
miRNA <- miRNAX[patients,]
if(do.LOG==TRUE){
ids <- which(mRNA==0)
if(length(ids)!=0){
mRNA[ids] <- min(mRNA[-ids])
mRNA <- log(mRNA)
}
ids <- which(Methy==0)
if(length(ids)!=0){
Methy[ids] <- min(Methy[-ids])
Methy <- log(Methy)
}
ids <- which(miRNA==0)
if(length(ids)!=0){
miRNA[ids] <- min(miRNA[-ids])
miRNA <- log(miRNA)
}
}# End of do LOG
#normalization
mRNA = standardNormalization(mRNA)
Methy = standardNormalization(Methy)
miRNA = standardNormalization(miRNA)
#PCA
if(do.PCA==TRUE){
zero <- apply(mRNA,2,sum)
zero.ids <- which(zero==0)
if(length(zero.ids)==0){
pca <- prcomp(mRNA[,], center = TRUE, scale. = TRUE)
}else{
pca <- prcomp(mRNA[,-zero.ids], center = TRUE, scale. = TRUE)
}
summ <- summary(pca)
csum <- cumsum(summ$importance[2,])
id <- which(csum>0.90)[1]
#mRNA <- pca$x[,1:id]
mRNA <- pca$x[,]
zero <- apply(Methy,2,sum)
zero.ids <- which(zero==0)
if(length(zero.ids)==0){
pca <- prcomp(Methy[,], center = TRUE, scale. = TRUE)
}else{
pca <- prcomp(Methy[,-zero.ids], center = TRUE, scale. = TRUE)
}
summ <- summary(pca)
csum <- cumsum(summ$importance[2,])
id <- which(csum>0.90)[1]
#Methy <- pca$x[,1:id]
Methy <- pca$x[,]
zero <- apply(miRNA,2,sum)
zero.ids <- which(zero==0)
if(length(zero.ids)==0){
pca <- prcomp(miRNA[,], center = TRUE, scale. = TRUE)
}else{
pca <- prcomp(miRNA[,-zero.ids], center = TRUE, scale. = TRUE)
}
summ <- summary(pca)
csum <- cumsum(summ$importance[2,])
id <- which(csum>0.90)[1]
#miRNA <- pca$x[,1:id]
miRNA <- pca$x[,]
}# End of IF PCA
if(is.element(cancertype,c("breast","lung","gbm"))){
patients <- tolower(patients)
patients <- strsplit(patients,".", fixed=TRUE)
patients <- sapply(patients, function(x){paste(x[1:3],collapse=".")})
ids <- match(patients,as.character(survivalX[,1]))
###########
}else{
#for all other
ids <- match(gsub(".", "-", patients, fixed=TRUE),as.character(survivalX[,1]))
}
survival <- survivalX[ids,]
## HCfused - original
HC.iter=30
if(ENS1){
res <- HC_fused_subtyping_ens(list(mRNA,Methy,miRNA), max.k=10,
this_method=c("ward.D","ward.D2"),#Ward
HC.iter=HC.iter)
cl_fused <- res$cluster
}
if(ENS2){
res_combined <- HC_fused_subtyping_ens(list(mRNA,Methy,miRNA),
this_method=c("complete","single"),#Linkage
HC.iter=HC.iter)
cl_fused_combined_1 <- res_combined$cluster
}
if(ENS3){
res_combined <- HC_fused_subtyping_ens(list(mRNA,Methy,miRNA),
this_method=c("centroid","median"),#PGMC
HC.iter=HC.iter)
cl_fused_combined_2 <- res_combined$cluster
}
if(ENS4){
res_combined <- HC_fused_subtyping_ens(list(mRNA,Methy,miRNA),
this_method=c("mcquitty","average"),#PGMA
HC.iter=HC.iter)
cl_fused_combined_3 <- res_combined$cluster
}
#################################################################
if(ENS1){
groups <- factor(cl_fused)
names(groups) = rownames(survival)
coxFit <- coxph(Surv(time = Survival, event = Death) ~ groups, data = survival, ties="exact")
cox_fused <- round(summary(coxFit)$sctest[3],digits = 40);
#print(cox_fused)
P_FUSED[xx] = round(summary(coxFit)$sctest[3],digits = 40);
}
if(ENS2){
groups <- factor(cl_fused_combined_1)
names(groups) = rownames(survival)
coxFit <- coxph(Surv(time = Survival, event = Death) ~ groups, data = survival, ties="exact")
cox_fused <- round(summary(coxFit)$sctest[3],digits = 40);
#print(cox_fused)
P_FUSED_combined_1[xx] = round(summary(coxFit)$sctest[3],digits = 40);
}
if(ENS3){
groups <- factor(cl_fused_combined_2)
names(groups) = rownames(survival)
coxFit <- coxph(Surv(time = Survival, event = Death) ~ groups, data = survival, ties="exact")
cox_fused <- round(summary(coxFit)$sctest[3],digits = 40);
#print(cox_fused)
P_FUSED_combined_2[xx] = round(summary(coxFit)$sctest[3],digits = 40);
}
if(ENS4){
groups <- factor(cl_fused_combined_3)
names(groups) = rownames(survival)
coxFit <- coxph(Surv(time = Survival, event = Death) ~ groups, data = survival, ties="exact")
cox_fused <- round(summary(coxFit)$sctest[3],digits = 40);
#print(cox_fused)
P_FUSED_combined_3[xx] = round(summary(coxFit)$sctest[3],digits = 40);
}
RESULT <- cbind(P_FUSED, P_FUSED_combined_1,P_FUSED_combined_2, P_FUSED_combined_3)
colnames(RESULT) <- c("ward.D-ward.D2","complete-single","centroid-median","mcquitty-average")
print(RESULT)
}#end of loop
RESULT_log <- -log10(RESULT)
#colnames(RESULT_log) <- c("HC_FUSED","HC_FUSED_kNN_1","HC_FUSED_kNN_2",
# "HC_FUSED_kNN_3","HC_FUSED_kNN_4")
boxplot(RESULT_log, col="grey", ylab="-log10(logrank p-value)", las=1,
outline=FALSE, cex.axis=0.9)
abline(h=-log10(0.05), col="red")
stop("Allet jut!")
boxplot(-log10(cbind(ALL,ENS)), ylab="-log10(logrank p-value)",
las=2,outline=FALSE, cex.axis=0.6, col=c(rep("grey",8),rep("cadetblue",4)))
abline(h=-log10(0.05), col="red")
## Paper plots
par(mfrow=c(2,2))
GBM_ALL <- read.table("GBM_ALL.txt")
GBM_ENS <- read.table("GBM_ENSEMBLE.txt")
KIDNEY_ALL <- read.table("KIDNEY_ALL.txt")
KIDNEY_ENS <- read.table("KIDNEY_ENSEMBLE.txt")
LIVER_ALL <- read.table("LIVER_ALL.txt")
LIVER_ENS <- read.table("LIVER_ENSEMBLE.txt")
SARCOMA_ALL <- read.table("SARCOMA_ALL.txt")
SARCOMA_ENS <- read.table("SARCOMA_ENSEMBLE.txt")
boxplot(-log10(cbind(GBM_ALL,GBM_ENS)), ylab="-log10(logrank p-value)",
las=2,outline=FALSE, cex.axis=0.6, col=c(rep("grey",8),rep("cadetblue",4)),
main="GBM")
abline(h=-log10(0.05), col="red")
boxplot(-log10(cbind(KIDNEY_ALL,KIDNEY_ENS)), ylab="-log10(logrank p-value)",
las=2,outline=FALSE, cex.axis=0.6, col=c(rep("grey",8),rep("cadetblue",4)),
main="KIRC")
abline(h=-log10(0.05), col="red", main="KIRC")
boxplot(-log10(cbind(LIVER_ALL,LIVER_ENS)), ylab="-log10(logrank p-value)",
las=2,outline=FALSE, cex.axis=0.6, col=c(rep("grey",8),rep("cadetblue",4)),
main="LIHC")
abline(h=-log10(0.05), col="red", main="LIHC")
boxplot(-log10(cbind(SARCOMA_ALL,SARCOMA_ENS)), ylab="-log10(logrank p-value)",
las=2,outline=FALSE, cex.axis=0.6, col=c(rep("grey",8),rep("cadetblue",4)),
main="SARC")
abline(h=-log10(0.05), col="red", main="SARC")
# Speed
TIME <- c(45.84, 49.35, 86.23, 129, 131.2, 137.7, 143, 162.6)
barplot(TIME, ylab="Elapsed Time (Seconds)",
name=c("NEMO","SNF","HCfused","UPGMC-WPGMC","ward.D-ward.D2",
"complete-single","UPGMA-WPGMA","PINSPlus"), las=2, cex.names=0.6,
cex.axis=.8)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.