quality_criteria: Quality criteria (QC) computations

View source: R/quality_criteria.R

quality_criteriaR Documentation

Quality criteria (QC) computations

Description

Computation of common quality criteria for evaluation of model predictions performance: standard qc (average fold error, maximal error), bias (mean predictions error), precision (root mean square error), Student's t-Test, correlation test and linear regression.

Usage

quality_criteria(
  run,
  predictions = "PRED",
  log_data = FALSE,
  alpha = 0.05,
  drop_empty_splits = FALSE
)

Arguments

run

pmxploit NONMEM run object.

predictions

character. Name of the predictions column in the result tables. Default is "PRED" for population predictions.

alpha

numeric. Alpha risk. Used for bias confidence interval computation and T-test comparing observations and predictions. Default is 5%.

drop_empty_splits

logical. Drop empty split groups from QC results.

Details

For quality criteria computations, residuals are computed based on the formula:

pred_err_i = pred_i - obs_i

  • Standard QC

  • Bias: Mean Prediction Error (MPE)

    • Absolute: mean(pred_err)

    • Confidence interval for a given alpha

    • Relative: mean(pred_err/obs)

  • Precision: Root Mean Square Error (RMSE)

    • Absolute: Student's t-Test estimate of t.test((obs - pred)^2)

    • Confidence interval for a given alpha

    • Relative: rmse/mean(obs)

  • Student's t-Test: observations vs predictions (paired, two-sided)

    Returns estimate, statistic, p-value, degrees of freedom (parameter) and confidence interval given alpha.

  • Correlation test between observations and predictions

    Returns estimate, statistic, p-value, degrees of freedom (parameter) and confidence interval given alpha.

  • Linear regression: pred = intercept + slope * obs

    Returns intercept and slope estimates, standard errors, statistics and p-values given alpha.

Value

A list containing the quality criteria analysis results.

Examples

EXAMPLERUN %>% quality_criteria()

EXAMPLERUN %>% quality_criteria(alpha = 0.01)

EXAMPLERUN %>% group_by(SEX) %>% quality_criteria()

EXAMPLERUN %>% filter(STUD == 2) %>% quality_criteria()

EXAMPLERUN %>% filter(STUD != 2) %>% quality_criteria()

EXAMPLERUN %>% filter(AGE <= 24) %>% quality_criteria()

pnolain/pmxploit documentation built on Jan. 31, 2024, 1:16 p.m.